BZOJ4709 Jsoi2011 柠檬【决策单调性+单调栈】
Description
Flute 很喜欢柠檬。它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬。贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上。为了方便,我们从左到右给贝壳编号 1..N。每只贝壳的大小不一定相同,贝壳 i 的大小为 si(1 ≤ si ≤10,000)。变柠檬的魔法要求,Flute 每次从树枝一端取下一小段连续的贝壳,并选择一种贝壳的大小 s0。如果 这一小段贝壳中 大小为 s0 的贝壳有 t 只,那么魔法可以把这一小段贝壳变成 s0t^2 只柠檬。Flute 可以取任意多次贝壳,直到树枝上的贝壳被全部取完。各个小段中,Flute 选择的贝壳大小 s0 可以不同。而最终 Flute 得到的柠檬数,就是所有小段柠檬数的总和。Flute 想知道,它最多能用这一串贝壳变出多少柠檬。请你帮忙解决这个问题。
Input
第 1 行:一个整数,表示 N。
第 2 .. N + 1 行:每行一个整数,第 i + 1 行表示 si。
Output
仅一个整数,表示 Flute 最多能得到的柠檬数。
Sample Input
5
2
2
5
2
3
Sample Output
21
//Flute 先从左端取下 4 只贝壳,它们的大小为 2, 2, 5, 2。选择 s0 = 2,那么这一段里有 3 只大小为 s0 的贝壳,通过魔法可以得到 2×3^2 = 18 只柠檬。再从右端取下最后一只贝壳,通过魔法可以得到 1×3^1 = 3 只柠檬。总共可以得到 18 + 3 = 21 只柠檬。没有比这更优的方案了。
思路
首先发现一个性质
对于选出来的每个区间,区间左端点种类和区间右端点相等,而且这一段区间选定的一定是端点的值,否则一定可以分离出没有用的区间另外计算贡献
然后我们发现对于任意的\(j_1<j_2<i_1<i_2\)
因为每一个种类的前缀和是单调递增的,且\(y=x^2\)是个下凸函数,所以如果在\(i_1\)处\(j_1\)比\(j_2\)更优,有\(i_2\)的时候\(j_1\)一定比\(j_2\)优
所以就可以对每个种类维护一个单调栈
这样就可以维护最优的决策点
但是为了保证决策和斜率都是单调的,在加入节点前我们可以判断,如果栈顶-1超过栈顶的最小前缀大小小于等于站顶超过当前节点的最小前缀大小,那么栈顶是无效的
然后在加入之后判断栈顶-1超过栈顶的前缀大小小于等于当前前缀最小,那么栈顶已经不优秀了,直接弹栈就可以了
//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
//typename
typedef long long ll;
//convenient for
#define for_up(a, b, c) for (int a = b; a <= c; ++a)
#define for_down(a, b, c) for (int a = b; a >= c; --a)
#define for_vector(a, b) for (int a = 0; a < (signed)b.size(); ++a)
//inf of different typename
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
//fast read and write
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 1e5 + 10;
const int M = 1e4 + 10;
ll dp[N];
int n, a[N];
int pre[N], last[N], s[N];
vector<int> p[M];
ll cal(int lastpos, int vl) {
return dp[lastpos - 1] + 1ll * a[lastpos] * vl * vl;
}
int check(int x, int y) { // 算x点超过y点的最小前缀和
int l = 1, r = n, ans = n + 1;
while (l <= r) {
int mid = (l + r) >> 1;
if(cal(x, mid - s[x] + 1) >= cal(y, mid - s[y] + 1)) ans = mid , r = mid - 1;
else l = mid + 1;
}
return ans;
}
#define S(s) (signed)s.size()
#define R1(s) S(s) - 1
#define R2(s) S(s) - 2
#define now p[a[i]]
int main() {
Read(n);
for_up(i, 1, n) {
Read(a[i]);
last[i] = pre[a[i]];
s[i] = s[last[i]] + 1;
pre[a[i]] = i;
}
for_up(i, 1, n) {
while (S(now) > 1 && check(now[R2(now)], now[R1(now)]) <= check(now[R1(now)], i)) now.pop_back();
now.push_back(i);
while (S(now) > 1 && check(now[R2(now)], now[R1(now)]) <= s[i]) now.pop_back();
dp[i] = cal(now[R1(now)], s[i] - s[now[R1(now)]] + 1ll);
}
Write(dp[n]);
return 0;
}
BZOJ4709 Jsoi2011 柠檬【决策单调性+单调栈】的更多相关文章
- [BZOJ4709][JSOI2011]柠檬 决策单调性优化dp
题解: 解法1: 单调栈优化 首先发现一个性质就是 如果当前从i转移比从j转移更加优秀 那么之后就不会从j转移 所以我们考虑利用这个性质 我们要维护一个队列保证前一个超过后一个的时间单调不减 怎么来维 ...
- BZOJ4709: [Jsoi2011]柠檬(决策单调性)
题意 题目链接 Sol 结论:每次选择的区间一定满足首位元素相同.. 仔细想想其实挺显然的,如果不相同可以删掉多着的元素,对答案的贡献是相同的 那么设\(f[i]\)表示到第\(i\)个位置的最大价值 ...
- 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈
[BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...
- 【bzoj4709】[Jsoi2011]柠檬 决策单调性+dp
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...
- bzoj4709: [Jsoi2011]柠檬 斜率优化
题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...
- bzoj4709 [jsoi2011]柠檬
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...
- [BZOJ4709][JSOI2011]柠檬(斜率优化DP)
显然选出的每一段首尾都是相同的,于是直接斜率优化,给每个颜色的数开一个单调栈即可. #include<cstdio> #include<vector> #include< ...
- BZOJ4709 JSOI2011柠檬(动态规划)
首先要冷静下来发现这仅仅是在划分区间.显然若有相邻的数字相同应当划分在同一区间.还有一个显然的性质是区间的两端点应该相同且选择的就是端点的数.瞬间暴力dp就变成常数极小100002了.可以继续斜率优化 ...
- DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)
前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...
随机推荐
- Linux计划任务,自动删除n天前的旧文件
Linux计划任务,自动删除n天前的旧文件 linux是一个很能自动产生文件的系统,日志.邮件.备份等.虽然现在硬盘廉价,我们可以有很多硬盘空间供这些文件浪费,但需求总是多方面的嘛-我就觉得让系统定时 ...
- Eclipse安卓项目导入android.support.design报错的解决办法
导入android.support.design出错:1.项目除了需要依赖appcompat_v7包外还要design包2.design包就是在安卓sdk下Extras中的android.suppor ...
- led,key通用IO的端口
1 注意通用IO端口, GPBCON 只能控制一个GPBDAT位(对应的位),而GPBUP可以使能GPBCON.
- JSP 调试
要测试/调试一个JSP或servlet程序总是那么的难.JSP和Servlets程序趋向于牵涉到大量客户端/服务器之间的交互,这很有可能会产生错误,并且很难重现出错的环境. 接下来将会给出一些小技巧和 ...
- TestNG,多个场景结合运行Suite.xml
方法一.首先新增一个.xml文件(经过一段时间的练习,找到其他方法添加XML,如下) 再到文件中添加如下: <suite name = "Selenium school"&g ...
- PowerDesigner中NAME和COMMENT的互相转换
原文: http://www.cnblogs.com/yelaiju/archive/2013/04/26/3044828.html 由于PDM 的表中 Name 会默认=Code 所以很不方便, 所 ...
- 负载均衡,会话保持,session同步
一,什么负载均衡 一个新网站是不要做负载均衡的,因为访问量不大,流量也不大,所以没有必要搞这些东西.但是随着网站访问量和流量的快速增长,单台服务器受自身硬件条件的限制,很难承受这么大的访问量.在这种情 ...
- RedHat/CentOS 7通过nmcli命令管理网络教程
Red Hat Enterprise Linux 7 和CentOS 7 的网络管理实际上是对NetworkManager的管理,可通过nmcli命令进行控制,下面小编就给大家介绍下RedHat/Ce ...
- 华为EPON OLT开局配置
配置思路: 1. 登录olt(console进去之后配地址) 2.配置上联口(配vlan和起三层地址互联路由的lan口) 3.epon接分光器,分光器下接光猫 4.自动发现光猫.配置DBA数据和线 ...
- superset dashboard 设置自动刷新
因为发现了,自己制作了看板dashboard,却不会刷新,很奇怪. 那这样不是太傻了.难道要业务人员一个个去点吗? 一定有刷新的,然后和无头苍蝇在网上找了半天. 实际刷新的位置在这里. 具体设置有很多 ...