BZOJ3566 SHOI2014 概率充电器 【概率DP】
BZOJ3566 SHOI2014 概率充电器
Description
著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!
”
SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?
Input
第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。
Output
输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数
Sample Input
3
1 2 50
1 3 50
50 0 0
Sample Output
1.000000
HINT
对于 100%的数据,n≤500000,0≤p,qi≤100。
一开始想错了去正向计算每个点有电的概率然后GG
后来发现可以反向设计状态
就是说可以用f[i]表示i号节点不能充电的概率,这个东西显然是可以乘的
然后就可以先计算子树内的贡献期望再计算子树外的期望,然后转移一下就好了
状态设计还是比较巧妙的
#include<bits/stdc++.h>
using namespace std;
#define N 500010
struct Edge{int v,nxt;double p;}E[N<<];
int head[N],tot=;
double a[N],f[N];
int n;
void add(int u,int v,double p){
E[++tot]=(Edge){v,head[u],p};
head[u]=tot;
}
void dfs1(int u,int fa){
f[u]=-a[u];
for(int i=head[u];i;i=E[i].nxt){
int v=E[i].v;
if(v==fa)continue;
dfs1(v,u);
f[u]*=-(-f[v])*E[i].p;
}
}
void dfs2(int u,int fa){
for(int i=head[u];i;i=E[i].nxt){
int v=E[i].v;
if(v==fa)continue;
double tmp=-(-f[v])*E[i].p;
if(tmp>1e-)f[v]*=-(-f[u]/tmp)*E[i].p;
dfs2(v,u);
}
}
int main(){
scanf("%d",&n);
for(int i=;i<n;i++){
int u,v;double p;
scanf("%d%d%lf",&u,&v,&p);
p/=100.0;
add(u,v,p);
add(v,u,p);
}
for(int i=;i<=n;i++)scanf("%lf",&a[i]),a[i]/=100.0;
dfs1(,);
dfs2(,);
double ans=;
for(int i=;i<=n;i++)ans+=-f[i];
printf("%.6lf",ans);
return ;
}
BZOJ3566 SHOI2014 概率充电器 【概率DP】的更多相关文章
- 洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP
洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP 题目描述 著名的电子产品品牌\(SHOI\) 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米 ...
- BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
- BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)
Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...
- BZOJ 3566: [SHOI2014]概率充电器( 树形dp )
通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...
- BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]
3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...
- [BZOJ3566][SHOI2014]概率充电器(概率DP)
题意:树上每个点有概率有电,每条边有概率导电,求每个点能被通到电的概率. 较为套路但不好想的概率DP. 树形DP肯定先只考虑子树,自然的想法是f[i]表示i在只考虑i子树时,能有电的概率,但发现无法转 ...
- BZOJ.3566.[SHOI2014]概率充电器(概率DP 树形DP)
BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给 ...
- luoguP4284 [SHOI2014]概率充电器 概率期望树形DP
这是一道告诉我概率没有想象中那么难的题..... 首先,用期望的线性性质,那么答案为所有点有电的概率和 发现一个点的有电的概率来源形成了一个"或"关系,在概率中,这并不好计算... ...
- BZOJ 3566 [SHOI2014]概率充电器 ——期望DP
期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #inc ...
- 【BZOJ】3566: [SHOI2014]概率充电器
[算法]树型DP+期望DP [题意]一棵树上每个点均有直接充电概率qi%,每条边有导电概率pi%,问期望有多少结点处于充电状态? [题解]引用自:[BZOJ3566][SHOI2014]概率充电器 树 ...
随机推荐
- 【三小时学会Kubernetes!(一) 】容器简介及为每个服务创建镜像
容器是什么 Kubernetes 是容器管理平台.可想而知我们需要容器去管理它们.但是容器是什么?Docker 官方文档的最佳答案如下: 容器映像是轻量级的.独立的.可执行软件包,包含所有可运行的东西 ...
- photoshop CS5制作具有立体感的按钮
今天在学习用photoshop cs5制作html模板的过程中,遇到了立体感按钮的制作问题.当然按钮的立体感也可以用CSS来实现,这里主要是用PS来制作具有立体感的按钮. 我也是PS新手,下面的东西, ...
- go-statsd项目
linux命令: 进程:top 收包丢包:netstat -su[c持续输出] go tool pprof: 我们可以使用go tool pprof命令来交互式的访问概要文件的内容.命令将会分析指定的 ...
- python中如何剔除字符串
问题: 过滤用户输入中前后多余的空白字符 ‘ ++++abc123--- ‘ 过滤某windows下编辑文本中的’\r’: ‘hello world \r\n’ 去掉文本中unicode组 ...
- buffer与cache的区别
top命令中有两项与内存相关的东西:buffer和cache.这两项与页高速缓存相关.磁盘的操作有逻辑级(文件系统)和物理级(磁盘块),这两种Cache就是分别缓存逻辑和物理级数据的. 在linux内 ...
- net.paoding.analysis.exception.PaodingAnalysisException: dic home should not be a file, but a directory!
Caused by: net.paoding.analysis.exception.PaodingAnalysisException: dic home should not be a file, b ...
- Centos7下部署两套python版本并存
Centos7下部署两套python版本并存 需求说明:centos7.2系统的开发机器上已经自带了python2.7版本,但是开发的项目中用的是python3.5版本,为了保证Centos系统的 ...
- Linux 忘记密码解决方法,Linux 远程登录
一.Linux 忘记密码解决方法 很多朋友经常会忘记Linux系统的root密码,linux系统忘记root密码的情况该怎么办呢?重新安装系统吗?当然不用!进入单用户模式更改一下root密码即可. 步 ...
- Netty实例几则
Netty是基于JDK NIO的网络框架 简化了NIO编程, 不用程序自己维护selector, 将网络通信和数据处理的部分做了分离 多用于做底层的数据通信, 心跳检测(keepalived) 1. ...
- 033——VUE中安装使用vue-devtools调试工具用于监控数据变化
vue官网:https://cn.vuejs.org/ 下的官方仓库:vue-devtools 安装到火狐或谷歌下都可以,安装成功之后,按F12查看就可以了