BZOJ2005 NOI2010 能量采集


Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20

HINT

对于100%的数据:1 ≤ n, m ≤ 100,000。



#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define N 100010
LL n,m,tot=0,ans=0;
LL pri[N],mu[N],F[N];
bool mark[N]={0};
void init(){
mu[1]=1;
for(int i=2;i<N;i++){
if(!mark[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&pri[j]*i<N;j++){
mark[pri[j]*i]=1;
if(i%pri[j]==0){
mu[i*pri[j]]=0;
break;
}else mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<N;i++)F[i]=F[i-1]+mu[i];
}
LL solve(int d){
LL res=0,n1=n/d,m1=m/d,up=min(n1,m1);
for(int i=1,j;i<=up;i=j+1){
j=min(n1/(n1/i),m1/(m1/i));
res+=(F[j]-F[i-1])*(n1/i)*(m1/i);
}
return res*d;
}
int main(){
init();
scanf("%lld%lld",&n,&m);
int up=min(n,m);
for(int i=1;i<=up;i++)ans+=solve(i);
ans*=2;
ans-=n*m;
printf("%lld",ans);
return 0;
}

但是我们发现这样做似乎不是最优秀的

然后定义k=d∗pk=d∗p
转换一下:
ans=−n∗m+2∗∑min(n,m)d=1d∑min(n,m)d|kμ(k/d)⌊nk⌋⌊mk⌋ans=−n∗m+2∗∑d=1min(n,m)d∑d|kmin(n,m)μ(k/d)⌊nk⌋⌊mk⌋

把k提到前面枚举:

ans=−n∗m+2∗∑min(n,m)k=1∑min(n,m)d|kdμ(k/d)⌊nk⌋⌊mk⌋ans=−n∗m+2∗∑k=1min(n,m)∑d|kmin(n,m)dμ(k/d)⌊nk⌋⌊mk⌋

ans=−n∗m+2∗∑min(n,m)k=1∑min(n,m)d|kkdμ(d)⌊nk⌋⌊mk⌋ans=−n∗m+2∗∑k=1min(n,m)∑d|kmin(n,m)kdμ(d)⌊nk⌋⌊mk⌋

ans=−n∗m+2∗∑min(n,m)k=1⌊nk⌋⌊mk⌋∑min(n,m)d|kkdμ(d)ans=−n∗m+2∗∑k=1min(n,m)⌊nk⌋⌊mk⌋∑d|kmin(n,m)kdμ(d)

然后我们发现∑min(n,m)d|kkdμ(d)∑d|kmin(n,m)kdμ(d)是可以线性筛的

时间复杂度O(n)预处理+O(sqrt(n))查询O(n)预处理+O(sqrt(n))查询

#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define N 100010
LL n,m,tot=0,ans=0;
LL pri[N],mu[N],F[N];
bool mark[N]={0};
void init(){
mu[1]=1;
for(int i=2;i<N;i++){
if(!mark[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&pri[j]*i<N;j++){
mark[pri[j]*i]=1;
if(i%pri[j]==0){
mu[i*pri[j]]=0;
break;
}else mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<N;i++)
for(int j=1;j*i<N;j++)
F[i*j]+=mu[i]*j;
for(int i=1;i<N;i++)F[i]+=F[i-1];
}
int main(){
init();
scanf("%lld%lld",&n,&m);
int up=min(n,m);
for(int i=1,j;i<=up;i=j+1){
j=min(n/(n/i),m/(m/i));
ans+=(F[j]-F[i-1])*(n/i)*(m/i);
}
ans*=2;
ans-=n*m;
printf("%lld",ans);
return 0;
}

然后我们发现可能代码2比代码1慢?为什么呢?
因为预处理的时候失去了线性的性质

但是当查询很多的时候代码优势就得以凸显

各取所需吧

BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】的更多相关文章

  1. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  2. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  3. luogu1447 [NOI2010]能量采集 莫比乌斯反演

    link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...

  4. BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]

    题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...

  5. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  6. [BZOJ2005][Noi2010]能量采集 容斥+数论

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4394  Solved: 2624[Submit][Statu ...

  7. 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集

    Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...

  8. BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 4727  Solved: 2877[Submit][Status][Discuss] Descript ...

  9. [bzoj2005][Noi2010][能量采集] (容斥 or 欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种 ...

随机推荐

  1. 如何更改nagios监控默认的检查时间

    /usr/local/nagios/etc/nagios.cfg: interval_length 表示时间单位,默认为60,即1分钟 /usr/local/nagios/etc/objects/se ...

  2. java自带的MD5

    前言:        MD5可生成16.32.64位数的签名. // MD5加码,32位 public static String toMD5(String plainText) { String r ...

  3. canvas实现鼠标拖拽矩形移动改变大小

    项目的一个新需求,动态生成矩形框,鼠标点击拖动改变矩形框的位置,并可以调整大小. 之前做过一个小demo,需求类似,但是在canvas内只有一个矩形框,拖动移动,当时记得是用isPointInPath ...

  4. js事件在不同浏览器之间的差异

    目录: 1. 介绍 2. 不同浏览器之间的差异 2.1 添加事件的方法 2.2 事件对象event 2.3 event中的属性/方法 3. 总结 1. 介绍 javascript与HTML之间的交互是 ...

  5. Linux下部署 jar包

    1.windows和linux执行jar命令是一样的,java -jar xxx.jar 2.使用nohup命令将jar程序设置成后台运行,运行日志输出到nohup.out,关闭窗口无影响 nohup ...

  6. AtCoder Regular Contest 078D

    两边bfs,先一边找到从1到n的路径并记录下来,然后挨个标记,最后一边bfs找1能到达的点,比较一下就行了 #include<map> #include<set> #inclu ...

  7. [转载]宿主机为linux、windows分别实现VMware三种方式上网,Host-only win10+rhel7.2实现

    研究一下虚拟机三种上网方式 转自:http://linuxme.blog.51cto.com/1850814/389691 一.VMware三种方式工作原理1 Host-only连接方式 让虚机具有与 ...

  8. ES6 HttpApplication Middleware

    const HttpRequest = function() { this.query = '' } function HttpResponse() { this.body = [] this.sta ...

  9. json与api- 天气api 博客词频分析

    一.json基础 1.1 json的介绍 json现在成为各种程序与语言之间交互的一种数据格式,本质是文本,字符串. json有两种格式: 1.  类似字典  {k:v,k,v} 2.  类似列表 { ...

  10. python 语法错误记录

    1  Missing parameter end_time in docstring less... (Ctrl+F1) 参数位置错误 注意:只有在形参表末尾的那些参数可以有默认参数值,即你不能在声明 ...