1146 Topological Order (25 分)

This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.

Output Specification:

Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.

Sample Input:

6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6

Sample Output:

3 4

题目大意:给出一个有向图,并且给定K个序列,判断这个序列是否是拓扑序列。

//我一看见我想的就是,得用邻接表存储图,然后对每一个输入的序列,都进行判断,基本上复杂度是非常高的,就是对每一个序列中的数,判断其之前出现的每一个数是否是它的next,这样来判断,然后写的不对。

#include <iostream>
#include<vector>
#include<map>
#include<algorithm>
using namespace std; vector<vector<int>> graph;
int main(){
int n,m;
cin>>n>>m;
graph.resize(n+);
int f,t;
for(int i=;i<m;i++){
cin>>f>>t;
graph[f].push_back(t);//因为是单向图
}
int u;
cin>>u;
vector<int> vt(n);
vector<int> ans;
for(int i=;i<u;i++){//复杂度是O(n^2),稍微有点高啊。
for(int j=;j<n;j++)
cin>>vt[j];
//检查在其之前出现的是否是在这个图的next里。
bool flag=true;
for(int j=;j<n;j++){
for(int k=;k<j;k++){//在这还得遍历vt[j]
for(int v=;v<graph[j].size();v++){
if(vt[k]==graph[j][v]){
cout<<vt[k]<<" "<<graph[j][v]<<"\n";
ans.push_back(i);
flag=false;
break;
}
}
if(!flag)break;
}
if(!flag)break;
}
}
for(int i=;i<ans.size();i++){
cout<<ans[i];
if(i!=ans.size()-)cout<<' ';
} return ;
}

结果:

//真的很奔溃啊,怎么每个都是不对的,那个2 2 到底是什么意思?我明天再看看吧。

//柳神的代码:

//根据入度出度来判断,非常可以了。。

学习了,要多复习。

PAT 1146 Topological Order[难]的更多相关文章

  1. [PAT] 1146 Topological Order(25 分)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  2. PAT 1146 Topological Order

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  3. PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)

    1146 Topological Order (25 分)   This is a problem given in the Graduate Entrance Exam in 2018: Which ...

  4. PAT 甲级 1146 Topological Order

    https://pintia.cn/problem-sets/994805342720868352/problems/994805343043829760 This is a problem give ...

  5. PAT甲级——1146 Topological Order (25分)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  6. PAT A1146 Topological Order (25 分)——拓扑排序,入度

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  7. 1146. Topological Order (25)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  8. 1146 Topological Order

    题意:判断序列是否为拓扑序列. 思路:理解什么是拓扑排序就好了,简单题.需要注意的地方就是,因为这里要判断多个,每次判断都会改变入度indegree[],因此记得要把indegree[]留个备份.ps ...

  9. PAT_A1146#Topological Order

    Source: PAT A1146 Topological Order (25 分) Description: This is a problem given in the Graduate Entr ...

随机推荐

  1. C语言 百炼成钢21

    //题目57:编写一个业务函数,实现字符串(前后各有三个空格,单词前后也均有空格) //" i am student, you are teacher " , //各个单词首字符大 ...

  2. Android不同版本下Notification创建方法

    项目环境 Project Build Target:Android 6.0 问题: 使用 new Notification(int icon, CharSequence tickerText, lon ...

  3. 第二百六十一节,Tornado框架模板引擎本质

    Tornado框架模板引擎本质 只需要了解一下即可 本篇就来详细的剖析模板处理的整个过程. 上图是返回给用户一个html文件的整个流程,较之前的Demo多了绿色流线的步骤,其实就是把[self.wri ...

  4. DTD与XML Schema都是XML文档。(选择1项)

    DTD与XML Schema都是XML文档.(选择1项) A.正确 B.不正确 解答:DTD不是XML文件, schema是XML文档

  5. 一个区域只能放置一个组件,如果想在一个区域放置多个组件就需要使用Panel来装载

    五种布局管理器: Flow Layout(流式布局):按照组件添加到容器中的顺序,顺序排放组件位置.默认为水平排列,如果越界那么会向下排列.排列的位置随着容器大小的改变而改变. Panel默认的布局管 ...

  6. (转)FS_S5PC100平台上Linux Camera驱动开发详解(二)

    4-3 摄像头的初始化流程及v4l2子设备驱动 这个问题弄清楚了以后下面就来看获得Camera信息以后如何做后续的处理: 在fimc_init_global调用结束之后我们获得了OV9650的信息,之 ...

  7. 整理:java定时器。

    本文纯属个人思路,如有错误,请指正. java的Timer依赖Thread,每一个Timer实际上都是一个Thread. import java.util.TimerTask; /** * 本类仅为实 ...

  8. ACM计算几何模板——二维几何基础(基本运算,点和线,多边形)

    /*==========================*\ | 计算几何基础函数 | | 1.点和向量的定义 | | 2.向量的基本运算 | | 3.点积 | | 4.向量长度 | | 5.两向量角 ...

  9. LoadRunner中winsocket协议学习

    首先让我们先看一下loadrunner- winsock 函数 一览表:        lrs_accept_connection 接受侦听套接字连接 lrs_close_socket 关闭打开的套接 ...

  10. hdu 3760(2次bfs求最短路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3760 思路:首先是建反图,从点n开始做spfa求出n到各点的最短路,然后从1点开始搜最小序列,对于边( ...