bzoj 2115 线性基
这种路径异或问题,可以转换为一条路径和若干个环的线性组合,然后就能用线性基搞了。
复习了一波线性基。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PII pair<int, int>
#define PLI pair<LL, int>
#define ull unsigned long long
using namespace std; const int N = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ; int n, m;
LL d[N];
bool vis[N];
vector<PLI> edge[N];
struct Base {
vector<LL> a;
void add(LL x) {
for(int i = ; i < a.size(); i++)
x = min(x, x^a[i]);
if(!x) return;
for(int i = ; i < a.size(); i++)
a[i] = min(a[i], a[i]^x);
a.push_back(x);
}
LL getMx(LL ans) {
for(int i = ; i < a.size(); i++)
ans = max(ans, ans^a[i]);
return ans;
}
} base; void dfs(int u, int fa) {
vis[u] = true;
for(int i = ; i < edge[u].size(); i++) {
int v = edge[u][i].se; LL w = edge[u][i].fi;
if(v == fa) continue;
if(vis[v]) {
base.add(d[u]^d[v]^w);
} else {
d[v] = d[u] ^ w;
dfs(v, u);
}
}
}
int main() {
scanf("%d%d", &n, &m);
for(int i = ; i <= m; i++) {
int u, v; LL w;
scanf("%d%d%lld", &u, &v, &w);
edge[u].push_back(mk(w, v));
edge[v].push_back(mk(w, u));
}
dfs(, );
printf("%lld\n", base.getMx(d[n]));
return ;
} /*
*/
bzoj 2115 线性基的更多相关文章
- [bzoj 2115]线性基+图论
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2115 给定一个带权无向图,要找出从1到n路径权值异或和最大的那一条的路径异或和. 考虑1到 ...
- bzoj 2460 线性基
#include<bits/stdc++.h> #define ll long long #define LL long long #define int long long using ...
- [bzoj 2460]线性基+贪心+证明过程
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2460 网上很多题目都没说这个题目的证明,只说了贪心策略,我比较愚钝,在大神眼里的显然的策略 ...
- BZOJ - 2844 线性基
题意:求给定的数在原数组中的异或组合中的排名(非去重) 因为线性基中\(b[j]=1\)表示该位肯定存在,所以给定的数如果含有该位,由严格递增和集合枚举可得,排名必然加上\(2^j\)(不是完全对角就 ...
- [bzoj 2844]线性基+高斯消元
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2844 又用到线性基+高斯消元的套路题了,因为经过高斯消元以后的线性基有非常好的序关系,所以 ...
- 就是要第一个出场的albus 【BZOJ】 线性基
就是我代码里读入之后的那一部分. 1.(一下a[]为原数组 a'[]为线性基) 线性基 中的a'[i]其实 是 原来的a[]中的某个子集(2^n个子集中的某个) 异或出来的 可能会有其他的子集与它异 ...
- BZOJ 3105 线性基 高斯消元
思路: 按照从大到小排个序 维护两个数组 一个是消元后的 另一个是 按照消元的位置排的 不断 维护从大到小 (呃具体见代码) //By SiriusRen #include <cstdio> ...
- bzoj 2115 Xor - 线性基 - 贪心
题目传送门 这是个通往vjudge的虫洞 这是个通往bzoj的虫洞 题目大意 问点$1$到点$n$的最大异或路径. 因为重复走一条边后,它的贡献会被消去.所以这条路径中有贡献的边可以看成是一条$1$到 ...
- -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】
[把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...
随机推荐
- HDU4003 树形DP
题意 :给一棵n个节点的树, 节点编号为1~n, 每条边都有一个花费值. 有k个机器人从S点出发, 问让机器人遍历所有边,最少花费值多少? 这题最难的地方应该就是如何定义状态了 定义dp ...
- \G,sql中select 如果太长,可以在后面放\G,竖行显示~~~~
1.使用\G按行垂直显示结果 如果一行很长,需要这行显示的话,看起结果来就非常的难受. 在SQL语句或者命令后使用\G而不是分号结尾,可以将每一行的值垂直输出. mysql> select * ...
- swift4.0中http连接(据于xcode9.3 URLSession)
NSURLSession是NSURLConnection的替代者,在2013年苹果全球开发者大会上(WWDC2013)随iOS7一起发布的,是对NSURLConnection进行了重构优化后的新的网络 ...
- jquery validate submitHandler 提交导致死循环
dom对像的提交form.submit();和jquery对像的提交$('').submit();功能上是没有什么区别的.但是如果用了jquery validate插件,提交时这二个就区别大了.$(' ...
- jQuery中deferred的对象使用
什么是deferred对象 开发网站的过程中,我们经常遇到某些耗时很长的javascript操作.其中,既有异步的操作(比如ajax读取服务器数据),也有同步的操作(比如遍历一个大型数组),它们都不是 ...
- 巧妙利用JQuery和Servlet来实现跨域请求
在网上看到很多的JQuery跨域请求的文章,比较有意思.这里我发表一个Servlet与JQuery配置实现跨域的代码,供大家参考.不足之处请指教 原理:JavaScript的Ajax不可以跨域,但是可 ...
- Vue 传递
今天刷了一遍Vue的API,做个小笔记 父子传递数据时,父组件里标记要传的数据,子组件里用props获取,子组件用$emit('func',args)发布事件,父组件用@func接收. 方法一 par ...
- NASA: A Closer View of the Moon(近距离观察月球)
Posted to Twitter by @Astro_Alex, European Space Agency astronaut Alexander Gerst, this image shows ...
- 二. Jmeter--参数化
1. 新建一个txt文件,输入些数据, 一行有四个数据,用逗号分隔. 保存的时候Encoding选择Unicode 2.添加一个Thread Group, 然后添加一个CSV Data Set Con ...
- KKT条件和拉格朗日乘子法详解
\(\frac{以梦为马}{晨凫追风}\) 最优化问题的最优性条件,最优化问题的解的必要条件和充分条件 无约束问题的解的必要条件 \(f(x)\)在\(x\)处的梯度向量是0 有约束问题的最优性条件 ...