【题目链接】 http://acm.hdu.edu.cn/showproblem.php?pid=5514

【题目大意】

  m个石子围成一圈,标号为0~m-1,现在有n只青蛙,每只每次跳a[i]个石子,
  问能被青蛙跳到的石子一共有几个

【题解】

  我们发现k*gcd(m,a[i])的位置均可以被跳到,那么我们首先筛出m的约数,
  判断其是否被覆盖到,不考虑重复的情况下,
  每个被覆盖到的约数的贡献为x*((m-1)/x)*((m-1)/x+1)/2,
  但是约数的倍数也为约数的情况被重复计算,因此我们按约数从大到小容斥计算答案。

【代码】

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
typedef long long LL;
int T,n,m,p[20010],mark[20010],x,tot;
LL dp[20010];
int main(){
scanf("%d",&T);
for(int Cas=1;Cas<=T;Cas++){
memset(dp,0,sizeof(dp));
memset(mark,0,sizeof(mark));
scanf("%d%d",&n,&m); tot=0;
for(int i=1;i*i<=m;i++){
if(m%i==0){
p[++tot]=i;
if(i*i!=m)p[++tot]=m/i;
}
}sort(p+1,p+tot+1);
for(int i=1;i<=n;i++){
scanf("%d",&x);
int GCD=__gcd(x,m);
for(int j=1;j<=tot;j++)if(p[j]%GCD==0)mark[j]=1;
}LL ans=0;
for(int i=tot;i;i--)if(mark[i]){
int t=(m-1)/p[i];
dp[i]=1LL*t*(t+1)/2*p[i];
for(int j=i+1;j<=tot;j++)if(mark[j]&&p[j]%p[i]==0)dp[i]-=dp[j];
ans=ans+dp[i];
}printf("Case #%d: %lld\n",Cas,ans);
}return 0;
}

HDU 5514 Frogs(容斥原理)的更多相关文章

  1. HDU 5514 Frogs (容斥原理)

    题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意 : 有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过a[i] ...

  2. HDU 5514 Frogs (容斥原理+因子分解)

    题目链接 题意:有n只青蛙,m个石头(围成圆圈).第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少? 题解:暴力肯定会超时,首先分解出m的因子,自己本身不用分,因为石头编号是0 ...

  3. hdu 5514 Frogs(容斥)

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  4. HDU 5514 Frogs 容斥定理

    Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...

  5. HDU 5514 Frogs

    Frogs Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on HDU. Original ID: 5514 ...

  6. HDU 5514 Frogs 欧拉函数

    题意: 有\(m(1 \leq m \leq 10^9)\)个石子排成一圈,编号分别为\(0,1,2 \cdots m-1\). 现在在\(0\)号石头上有\(n(1 \leq n \leq 10^4 ...

  7. HDU 5514 Frogs (数论容斥)

    题意:有n只青蛙,m个石头(围成圆圈).第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少? 析:首先可以知道的是第 i 只青蛙可以跳到 k * gcd(ai, m),然后我就计 ...

  8. hdu 5514 Frogs 容斥思想+gcd 银牌题

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  9. HDU 5514.Frogs-欧拉函数 or 容斥原理

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

随机推荐

  1. 【BZOJ】2565: 最长双回文串

    [题意]给定小写字母字符串s,求最长的 [ 可以分成左右两个回文串的 ] 子串,n<=10^5. [算法]回文树 [题解]对于每个字符x,处理出以x结尾的最长回文串,以x开头的最长回文串,然后枚 ...

  2. 第一周 ch01 课下测试

    1.Amdahl定律说明,我们对系统的某个部分做出重大改进,可以显著获得一个系统的加速比.(B) A .正确 B .错误 解析:Amdahl定律,该定律的主要思想是,当我们对系统的某个部分加速时,其对 ...

  3. 使用chardet判断编码方式

    1. chardet是什么 chardet是python中比较常用的一个编码方式检测库,需要注意的是它只检测并返回检测结果,并不负责对原数据做什么处理. 可以使用PIP命令安装: pip instal ...

  4. E - Travel Cards CodeForces - 847K (思维)

    题目链接:https://cn.vjudge.net/contest/272855#problem/E 题目大意:给你n,a,b,k,f.n代表有n次旅行计划,然后a代表一次单程旅行的车费,b代表从下 ...

  5. bootstrap通过ajax请求JSON数据后填充到模态框

    1.   JSP页面中准备模态框 <!-- 详细信息模态框(Modal) --> <div> <div class="modal fade" id=& ...

  6. weblogic 配置了ssl

    jingyan.baidu.com/article/72ee561abfe531e16138dfb5.html http://blog.sina.com.cn/s/blog_7ffec3e201019 ...

  7. Android的休眠与唤醒

    Android 休眠(suspend),在一个打过android补丁的内核中,state_store()函数会走另外一条路,会进入到request_suspend_state()中,这个文件在earl ...

  8. log4j生成日志

    Log4j是Apache的一个开源项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件,甚至是套接口服务器.NT的事件记录器.UNIX Syslog守护进程等:我们也可 ...

  9. oracle 一个网站

    http://www.oracle.com/technetwork/cn/articles/11g-pivot-101924-zhs.html

  10. IEnumerable的几个简单用法

    咋一看到IEnumerable这个接口,我们可能会觉得很神奇,在一般的编程时,基本上我们是想不到去用它的,可是,俗话说得好,存在便是道理,那么,它对我们来说,能够带来哪些奇妙的事情呢? 要想弄懂它,我 ...