HDU 5514 Frogs(容斥原理)
【题目链接】 http://acm.hdu.edu.cn/showproblem.php?pid=5514
【题目大意】
m个石子围成一圈,标号为0~m-1,现在有n只青蛙,每只每次跳a[i]个石子,
问能被青蛙跳到的石子一共有几个
【题解】
我们发现k*gcd(m,a[i])的位置均可以被跳到,那么我们首先筛出m的约数,
判断其是否被覆盖到,不考虑重复的情况下,
每个被覆盖到的约数的贡献为x*((m-1)/x)*((m-1)/x+1)/2,
但是约数的倍数也为约数的情况被重复计算,因此我们按约数从大到小容斥计算答案。
【代码】
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
typedef long long LL;
int T,n,m,p[20010],mark[20010],x,tot;
LL dp[20010];
int main(){
scanf("%d",&T);
for(int Cas=1;Cas<=T;Cas++){
memset(dp,0,sizeof(dp));
memset(mark,0,sizeof(mark));
scanf("%d%d",&n,&m); tot=0;
for(int i=1;i*i<=m;i++){
if(m%i==0){
p[++tot]=i;
if(i*i!=m)p[++tot]=m/i;
}
}sort(p+1,p+tot+1);
for(int i=1;i<=n;i++){
scanf("%d",&x);
int GCD=__gcd(x,m);
for(int j=1;j<=tot;j++)if(p[j]%GCD==0)mark[j]=1;
}LL ans=0;
for(int i=tot;i;i--)if(mark[i]){
int t=(m-1)/p[i];
dp[i]=1LL*t*(t+1)/2*p[i];
for(int j=i+1;j<=tot;j++)if(mark[j]&&p[j]%p[i]==0)dp[i]-=dp[j];
ans=ans+dp[i];
}printf("Case #%d: %lld\n",Cas,ans);
}return 0;
}
HDU 5514 Frogs(容斥原理)的更多相关文章
- HDU 5514 Frogs (容斥原理)
题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意 : 有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过a[i] ...
- HDU 5514 Frogs (容斥原理+因子分解)
题目链接 题意:有n只青蛙,m个石头(围成圆圈).第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少? 题解:暴力肯定会超时,首先分解出m的因子,自己本身不用分,因为石头编号是0 ...
- hdu 5514 Frogs(容斥)
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- HDU 5514 Frogs 容斥定理
Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...
- HDU 5514 Frogs
Frogs Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on HDU. Original ID: 5514 ...
- HDU 5514 Frogs 欧拉函数
题意: 有\(m(1 \leq m \leq 10^9)\)个石子排成一圈,编号分别为\(0,1,2 \cdots m-1\). 现在在\(0\)号石头上有\(n(1 \leq n \leq 10^4 ...
- HDU 5514 Frogs (数论容斥)
题意:有n只青蛙,m个石头(围成圆圈).第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少? 析:首先可以知道的是第 i 只青蛙可以跳到 k * gcd(ai, m),然后我就计 ...
- hdu 5514 Frogs 容斥思想+gcd 银牌题
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- HDU 5514.Frogs-欧拉函数 or 容斥原理
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
随机推荐
- node、npm及node_modules中依赖的版本更新
好久没用node了,想重新拾起来发现node还有相关模块的版本都太低了,使用npm install全是报版本低的警告. 这里记录一下,版本管理和node_modules更新的方法. 我用的是Windo ...
- 多进程Process
多进程旧式写法 from multiprocessing import Pool def f(x): return x*x if __name__ == '__main__': p = Pool(5) ...
- 概述sysfs文件系统【转】
转自:http://blog.csdn.net/npy_lp/article/details/78933292 内核源码:linux-2.6.38.8.tar.bz2 目标平台:ARM体系结构 sys ...
- 64_t5
texlive-mkpattern-svn15878.1.2-33.fc26.2.noarch..> 24-May-2017 15:54 38178 texlive-mkpic-bin-svn3 ...
- WebBrowser中运行js
HtmlElement script = wf.WebBrowser.Document.CreateElement("script"); script.SetAttribute(& ...
- C/C++——C语言数组名与指针
版权声明:原创文章,转载请注明出处. 1. 一维数组名与指针 对于一维数组来说,数组名就是指向该数组首地址的指针,对于: ]; array就是该数组的首地址,如果我们想定义一个指向该数组的指针,我们可 ...
- Webmin忘记密码解决方法,及配置文件介绍
Webmin忘记Web登陆时候的密码,无法登陆了,Google了一下,基本方法是通过changepass.pl可以修改密码 首先找到changepass.pl这个文件目录 $sudo locate c ...
- Next Permutation——简单、经典
Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...
- 【重点】Jmeter----- 将 JDBC Request 查询结果作为下一个接口参数方法(二)
一.说明 jmeter与数据库mysql已连接成功 二.需求 1.前置条件: 1.已user数据库的前8位手机号码作为行动计划的名称 2.行动计划的日期是2018-10-17 2.操作步骤: 1)获取 ...
- JS函数学习
=============数学函数========== 1.Math.random()为取随机数0~1之间的:0可以取到,1取不到 alert(Math.random()); 2.Math.PI为3. ...