「SCOI2015」情报传递

题目描述

奈特公司是一个巨大的情报公司,它有着庞大的情报网络。情报网络中共有 \(n\) 名情报员。每名情报员可能有若干名(可能没有)下线,除 \(1\) 名大头目外其余 \(n - 1\) 名情报员有且仅有 \(1\) 名上线。奈特公司纪律森严,每名情报员只能与自己的上、下线联系,同时,情报网络中仟意两名情报员一定能够通过情报网络传递情报。

奈特公司每天会派发以下两种任务中的一个任务:

  1. 搜集情报:指派 \(T\) 号情报员搜集情报;
  2. 传递情报:将一条情报从 \(X\) 号情报员传递给 \(Y\) 号情报员。

情报员最初处于潜伏阶段,他们是相对安全的,我们认为此时所有情报员的危险值为 \(0\);一旦某个情报员开始搜集情报,他的危险值就会持续增加,每天增加 \(1\) 点危险值。传递情报并不会使情报员的危险值增加。

为了保证传递情报的过程相对安全,每条情报都有一个风险控制值 \(C\)。余特公司认为,参与传递这条情报的所有情报员中,危险值大于 \(C\) 的情报员将对该条情报构成威胁。现在,奈特公司希望知道,对于每个传递情报任务,参与传递的情报员有多少个,其中对该条情报构成威胁的情报员有多少个。

\(n≤2×10^5,Q≤2×10^5,0<P_i,C_i≤N,1≤T_i,X_i,Y_i≤n\)

解题思路 :

观察发现,只有在第 $ i-C_i-1$ 天之前搜集情报的节点才可能对答案产生贡献

那么问题就转化为点权 $+1 $,和求某一时刻树上一条链上的点权和

比较简单的做法就是将询问离线下来树链剖分即可,复杂度是 $O(nlog^2n) $,而且不能做强制在线

考虑到询问某一时刻其实就是访问历史版本,那么只需要对树上的点权信息进行可持久化即可

记 \(sum_i\) 表示某一时刻 \(i\) 到 \(root\) 的路径的点权和,那么答案就是 \(sum_x + sum_y - sum_{lca} - sum_{fa(lca)}\)

也就是说只要对 \(sum\) 数组可持久化就好了,显然每一次新建一个版本时一个子树的点权都会 \(+1\) ,这东西在 \(dfn\) 序上是一段连续的区间,直接 \(ins\) 即可,总复杂度是 $O(nlogn) $

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
} #define fi first
#define se second
const int N = 200005; vector<int> g[N];
int rt[N], sz[N], ds[N], dep[N], dfn[N], f[N][21], vis[N], n, m, cnt, root; namespace Prework{
inline void dfs(int u, int fa){
sz[u] = 1, f[u][0] = fa, dep[u] = dep[fa] + 1, dfn[u] = ++cnt;
for(int i = 0; i < g[u].size(); i++)
if(g[u][i] != fa) dfs(g[u][i], u), sz[u] += sz[g[u][i]];
}
inline void realmain(){
dfs(root, 0);
for(int j = 1; j <= 20; j++)
for(int i = 1; i <= n; i++) f[i][j] = f[f[i][j-1]][j-1];
}
} inline pair<int, int> Getpath(int x, int y){
if(dep[x] < dep[y]) swap(x, y);
for(int i = 20; ~i; i--){
if(dep[f[x][i]] >= dep[y]) x = f[x][i];
if(dep[x] == dep[y]) break;
}
if(x == y) return make_pair(x, f[x][0]);
for(int i = 20; ~i; i--)
if(f[x][i] != f[y][i]) x = f[x][i], y = f[y][i];
return make_pair(f[x][0], f[f[x][0]][0]);
} struct SegmentTree{
struct Node{ int lc, rc, add; } T[N*50]; int size;
inline void ins(int &u, int pr, int l, int r, int L, int R){
T[u=++size] = T[pr];
if(l >= L && r <= R) return (void) (T[u].add++);
int mid = l + r >> 1;
if(L <= mid) ins(T[u].lc, T[pr].lc, l, mid, L, R);
if(mid < R) ins(T[u].rc, T[pr].rc, mid + 1, r, L, R);
}
inline int query(int u, int l, int r, int pos){
if(l == r) return T[u].add;
int mid = l + r >> 1, res = 0;
if(pos <= mid) res += query(T[u].lc, l, mid, pos);
else res += query(T[u].rc, mid + 1, r, pos);
return res + T[u].add;
}
}van; inline int calc(int x, int y){
if(!dfn[y] || !ds[x]) return 0;
return van.query(rt[ds[x]], 1, n, dfn[y]);
} int main(){
read(n);
for(int i = 1, x; i <= n; i++){
read(x);
if(x) g[x].push_back(i), g[i].push_back(x); else root = i;
}
Prework::realmain();
read(m);
for(int i = 1, op, x, y, z; i <= m; i++){
read(op), read(x);
if(op == 1){
ds[i] = ds[i-1], read(y), read(z); int t = Max(i - z - 1, 0);
pair<int, int> now = Getpath(x, y);
int res = calc(t, x) + calc(t, y) - calc(t, now.fi) - calc(t, now.se);
printf("%d %d\n", dep[x] + dep[y] - dep[now.fi] - dep[now.se], res);
}
else{
if(vis[x]){ ds[i] = ds[i-1]; continue; }
ds[i] = ds[i-1] + 1, vis[x] = 1;
van.ins(rt[ds[i]], rt[ds[i-1]], 1, n, dfn[x], dfn[x] + sz[x] - 1);
}
}
return 0;
}

「SCOI2015」情报传递的更多相关文章

  1. AC日记——「SCOI2015」情报传递 LiBreOJ 2011

    #2011. 「SCOI2015」情报传递 思路: 可持久化树状数组模板: 代码: #include <bits/stdc++.h> using namespace std; #defin ...

  2. 【LOJ】 #2011. 「SCOI2015」情报传递

    题解 一写过一交A的一道数据结构水题 我们发现大于C可以转化为这条路径上有多少个在某天之前开始调查的情报员,离线全部读入,变成树上路径查询某个区间的数出现过多少次,构建一棵根缀的主席树,查询的时候用两 ...

  3. 「SCOI2015」小凸想跑步 解题报告

    「SCOI2015」小凸想跑步 最开始以为和多边形的重心有关,后来发现多边形的重心没啥好玩的性质 实际上你把面积小于的不等式列出来,发现是一次的,那么就可以半平面交了 Code: #include & ...

  4. 「SCOI2015」国旗计划 解题报告

    「SCOI2015」国旗计划 蛮有趣的一个题 注意到区间互不交错,那么如果我们已经钦定了一个区间,它选择的下一个区间是唯一的,就是和它有交且右端点在最右边的,这个可以单调队列预处理一下 然后往后面跳拿 ...

  5. 「SCOI2015」小凸解密码 解题报告

    「SCOI2015」小凸解密码 题意:给一个环,定义一段连续的极长\(0\)串为\(0\)区间,定义一个位置的离一个\(0\)区间的距离为这个位置离这个区间中\(0\)的距离的最小值,每次询问一个位置 ...

  6. 「SCOI2015」小凸玩矩阵 解题报告

    「SCOI2015」小凸玩矩阵 我好沙茶啊 把点当边连接行和列,在外面二分答案跑图的匹配就行了 我最开始二分方向搞反了,样例没过. 脑袋一抽,这绝壁要费用流,连忙打了个KM 然后wa了,一想这个不是完 ...

  7. 「SCOI2015」小凸玩密室 解题报告

    「SCOI2015」小凸玩密室 虽然有心里在想一些奇奇怪怪的事情的原因,不过还是写太久了.. 不过这个题本身也挺厉害的 注意第一个被点亮的是任意选的,我最开始压根没注意到 \(dp_{i,j}\)代表 ...

  8. loj#2009.「SCOI2015」小凸玩密室

    题目链接 loj#2009. 「SCOI2015」小凸玩密室 题解 树高不会很高<=20 点亮灯泡x,点亮x的一个子树,再点亮x另外的子树, 然后回到x的父节点,点亮父节点之后再点亮父节点的其他 ...

  9. LibreOJ #2006. 「SCOI2015」小凸玩矩阵 二分答案+二分匹配

    #2006. 「SCOI2015」小凸玩矩阵 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

随机推荐

  1. python学习笔记(十五)之集合

    集合:对应数学中的集合类型.集合中的元素是唯一,且无序的. 创建集合 方法一:使用{},注意python会自动删除重复元素 >>> number = {1,2,3,4,3,2,1} ...

  2. 读书笔记 ~ Nmap渗透测试指南

    记录Nmap选项及脚本使用,仅供参考... 除了端口扫描,好像其它脚本都比较鸡肋,用途感觉应该没有专用的小工具好用,不过还是可以看看,选项和脚本还是相当的丰富的. Nmap 使用帮助 starnigh ...

  3. 使用webpack配置react并添加到flask应用

    学习react,配置是很痛苦的一关,虽然现在有了create-react-app这样方便的工具,但是必须要自己配置一遍,才能更好地进行项目开发. 首先要明确一个概念:react的文件必须经过编译才能被 ...

  4. 33、re的match和search区别?

    1.match()函数只检测RE是不是在string的开始位置匹配,search()会扫描整个string查找匹配:2.也就是说match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功 ...

  5. Machine Learning系列--维特比算法

    维特比算法(Viterbi algorithm)是在一个用途非常广的算法,本科学通信的时候已经听过这个算法,最近在看 HMM(Hidden Markov model) 的时候也看到了这个算法.于是决定 ...

  6. LINUX内核中的机制OOM

    [概念] LINUX内核中有一个机制叫做OOM killer(Out Of Memery killer) 该机制监控内存占用过大,尤其是瞬间消耗大量内存的进程, 为了防止内存被耗尽,所以OOM kil ...

  7. maven实战系列

    Maven实战(一)安装和配置 Maven实战(二)构建简单Maven项目 Maven实战(三)Eclipse构建Maven项目 Maven实战(四)生命周期 Maven实战(五)坐标详解 Maven ...

  8. 详解Oracle的unlimited tablespace系统权限

    1. 系统权限unlimited tablespace是隐含在dba, resource角色中的一个系统权限. 当用户得到dba或resource的角色时, unlimited tablespace系 ...

  9. ECMA-Script5

    严格模式 所谓严格模式,从字面上就很好理解,即更严格的模式 在这种模式下执行,浏览器会对JS的要求更苛刻. 举例:  function m1(){      max = 100; } m1(); al ...

  10. DOM的查找与操作

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...