hdu 3507 斜率优化
我的第一道斜率优化。
就这道题而言,写出原始的方程:
dp[i] = min{ dp[j] + (sum[i]-sum[j])2 + M | j in [0,i) }
O(n^2)的复杂度肯定超时,要么优化转移,要么重写方程。
斜率优化的思想就是减少不必要的枚举(即不枚举肯定不会成为决策点的j)。
我们考虑两个位置p<q<i
“选择q比选择p优” 当且仅当 dp[q]+(sum[i]-sum[q])2+M < dp[p]+(sum[i]-sum[p])2+M
化简右边即:
[ (dp[q]+sum2[q])-(dp[p]+sum2[p]) ] / ( sum[q]-sum[p] ) < sum[i]*2
该式可以看成两个点连线的斜率:( sum[q], dp[q]+sum2[q] ) 与 ( sum[p], dp[p]+sum2[p] ) 两点。
文字语言就是:“将每个决策位置看成一个二维坐标系下的点,对于两个决策点,后者比前者优 当且仅当 两点连线的斜率小于sum[i]*2”
这样怎么减少不必要的枚举呢?
可以发现,所有决策点一定是单调不下降的(题中可能出现权值为0,此时有可能出现斜率为正无穷,若M=0,还有可能出现重点,所以计算斜率不要用除法)
上面的B点一定是不会成为最优决策点的,反证法:
如果B成为最优决策点,那么
2*sum[i]>kab 且 2*sum[i]<kbc
而显然kab > kbc ,这样就推出了2*sum[i]>kab >kbc >2*sum[i],矛盾。
故B不可能成为最优决策点,同理,D也不行,删掉这些点后,我们剩下的图形就是一个下凸的图形了:
我们维护这样一个下凸的图形到队列中:
当要查找i位置的最优决策点时,一直删除队首的点,直到队中的第一条直线的斜率大于2*sum[i]或队中只有一个点,此时队首元素就是最优决策点。
计算完i位置后,要将i位置对应的点加入到队列中,此时会删除一些对尾的点,以保持队中点的下凸性(注意处理重合的点)。
这样,我们就利用斜率优化掉了很多不必要的枚举,将时间复杂度从O(n^2)降到了O(n)。
#include <cstdio>
#define ln(A,B) ((B)-(A))
#define maxn 500010 typedef long long lng; struct Vector {
lng x, y;
int id;
Vector(){}
Vector( lng x, lng y, int id ) : x(x), y(y), id(id) {}
Vector operator-( const Vector & b ) const { return Vector(x-b.x,y-b.y,); }
lng operator&( const Vector & b ) const {
return x*b.y-y*b.x;
}
};
typedef Vector Point; int n, m;
int cost[maxn];
lng sum[maxn];
lng dp[maxn]; int beg, end;
Point qu[maxn]; int main() {
while( ) {
if( scanf( "%d%d", &n, &m )!= ) return ; sum[] = ;
for( int i=; i<=n; i++ ) {
scanf( "%d", cost+i );
sum[i] = sum[i-]+cost[i];
} dp[] = ;
qu[beg=end=] = Point( , , ); for( int i=; i<=n; i++ ) {
while( end>beg && qu[beg+].y-qu[beg].y<=(qu[beg+].x-qu[beg].x)**sum[i] )
beg++;
int j = qu[beg].id;
dp[i] = dp[j]+(sum[i]-sum[j])*(sum[i]-sum[j])+m;
Point npt = Point( sum[i], dp[i]+sum[i]*sum[i], i );
while( end>beg && (ln(qu[end-],qu[end])&ln(qu[end-],npt))<= )
end--;
qu[++end] = npt;
}
printf( "%lld\n", dp[n] );
}
}
hdu 3507 斜率优化的更多相关文章
- Print Article HDU - 3507 -斜率优化DP
思路 : 1,用一个单调队列来维护解集. 2,假设队列中从头到尾已经有元素a b c.那么当d要入队的时候,我们维护队列的下凸性质, 即如果g[d,c]<g[c,b],那么就将c点删除.直到找到 ...
- HDU 3507 斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507 斜率优化 DP Print Article
在kuangbin巨巨博客上学的. #include <iostream> #include <cstdio> #include <cstring> #includ ...
- hdu 3507 斜率dp
不好理解,先多做几个再看 此题是很基础的斜率DP的入门题. 题意很清楚,就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M 让我们求这个费用的最小值. 设dp[i]表示输出前i个 ...
- hdu 3669(斜率优化DP)
Cross the Wall Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others) ...
- HDU 4258 斜率优化dp
Covered Walkway Time Limit: 30000/10000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- HDU 2829 斜率优化DP Lawrence
题意:n个数之间放m个障碍,分隔成m+1段.对于每段两两数相乘再求和,然后把这m+1个值加起来,让这个值最小. 设: d(i, j)表示前i个数之间放j个炸弹能得到的最小值 sum(i)为前缀和,co ...
- hdu 3045 斜率优化DP
思路:dp[i]=dp[j]+sum[i]-sum[j]-(i-j)*num[j+1]; 然后就是比较斜率. 注意的时这里j+t<=i: #include<iostream> #in ...
随机推荐
- 常用的css3新特性总结
1:CSS3阴影 box-shadow的使用和技巧总结: 基本语法是{box-shadow:[inset] x-offset y-offset blur-radius spread-radiuscol ...
- 分享6款国内、外开源PHP轻论坛CMS程序
第一.Startbbs Startbbs,一款国产个人兴趣分享的轻论坛程序,采用PHP+MYSQL架构,目前版本是V1.1.5,之前我也 有搭建使用过功能还是比较简单的,默认风格比较让普通用户接受,这 ...
- Mysql储存过程6: in / out / inout
in 为向函数传送进去的值 out 为函数向外返回的值 intout 传送进去的值, 并且还返回这个值 )) begin then select 'true'; else select 'false' ...
- Linux Kernel代码艺术——数组初始化【转】
转自:http://www.cnblogs.com/hazir/p/array_initialization.html 前几天看内核中系统调用代码,在系统调用向量表初始化中,有下面这段代码写的让我有点 ...
- logging模块配置笔记
logging模块配置笔记 log文件的路径 #判断在当前的目录下是否有一个logs文件夹.没有则创建 log_dir = os.path.dirname(os.path.dirname(__file ...
- Machine Learning系列--深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...
- 【题解】BZOJ 3065: 带插入区间K小值——替罪羊树套线段树
题目传送门 题解 orz vfk的题解 3065: 带插入区间K小值 系列题解 一 二 三 四 惨 一开始用了一种空间常数很大的方法,每次重构的时候merge两颗线段树,然后无限RE(其实是MLE). ...
- Django-manage.py
一.manage.py命令选项 manage.py是每个Django项目中自动生成的一个用于管理项目的脚本文件,需要通过python命令执行.manage.py接受的是Django提供的内置命令. 内 ...
- 远程连接 mysql 数据库连接不上的解决方案
今天用Navicat访问虚拟机上的mysql,无法访问报cannot connect(10038). 首先看是否可以telnet,本机cmd,telnet 10.10.10.10 3306,结果是连接 ...
- 解决 VUE 微信 IOS 路由跳转问题
watch: { "$route"(){ if (/iPhone|mac|iPod|iPad/i.test(navigator.userAgent)) { location.hre ...