给定一个具有N(N<50)个顶点(从1到N编号)的凸多边形,每个顶点的权均已知。问如何把这个凸多边形划分成N-2个互不相交的三角形,使得这些三角形顶点的权的乘积之和最小?

输入文件:第一行 顶点数N

第二行 N个顶点(从1到N)的权值

输出格式:最小的和的值

样例:5

1 2 3 4 5

输出:38

 /*没找到交的OJ网站,就自己造了几组数据试了一下
区间型DP的转移方程:一般涉及区间的起点和延伸的长度
f[i][j]表示从i开始j长度的区间分割三角形的最小乘积和,把端点i,i+j-1可以与区间内任意一个不与i,i+j-1相邻的点组成三角形,所以枚举中间点k即可*/
#include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
#define N 120
#define MAX (1<<31)-1
long long a[N];
long long f[N][N];
int n;
int main()
{
scanf("%d",&n);
for(int i=;i<=n;++i)
{
scanf("%d",&a[i]);
a[i+n]=a[i];/*把这条多边形变成两倍的链条*/
}
memset(f,,sizeof(f));
for(int i=;i<=*n-;++i)
f[i][]=a[i]*a[i+]*a[i+];/*初始化*/
for(int j=;j<=n;++j)
for(int i=;i+j<=*n+;++i)
for(int k=i+;i+j-k>=;++k)/*枚举k*/
f[i][j]=min(f[i][j],f[i][k-i+]+f[k][i+j-k]+a[i]*a[k]*a[i+j-]);
long long ans=MAX;
for(int i=;i<=n;++i)/*注意最后把所有点作为区间端点长度为n的情况都枚举,找出最小值*/
ans=min(ans,f[i][n]);
cout<<ans<<endl;
return ;
}

区间DP--凸多边形三角剖分的更多相关文章

  1. UVA-1331 Minimax Triangulation 区间dp 计算几何 三角剖分 最大三角形最小化

    题目链接:https://cn.vjudge.net/problem/UVA-1331 题意 给一个任意多边形,把它分为多个三角形. 求某方案中最大的三角形是各方案中最小的面积的三角形面积. 思路 学 ...

  2. Uva 1331 - Minimax Triangulation(最优三角剖分 区间DP)

    题目大意:依照顺时针或者逆时针的顺序给出多边的点,要将这个多边形分解成n-2个三角形,要求使得这些三角行中面积最大的三角形面积尽量小,求最小值. 思路:用区间DP能够非常方便解决,多边形可能是凹边形, ...

  3. 动态规划——区间dp

    在利用动态规划解决的一些实际问题当中,一类是基于区间上进行的,总的来说,这种区间dp是属于线性dp的一种.但是我们为了更好的分类,这里仍将其单独拿出进行分析讨论. 让我们结合一个题目开始对区间dp的探 ...

  4. 区间DP(超详细!!!)

    一.问题 给定长为n的序列a[i],每次可以将连续一段回文序列消去,消去后左右两边会接到一起,求最少消几次能消完整个序列,n≤500. f[i][j]表示消去区间[i,j]需要的最少次数. 则; 若a ...

  5. 区间DP小结

    也写了好几天的区间DP了,这里稍微总结一下(感觉还是不怎么会啊!). 但是多多少少也有了点感悟: 一.在有了一点思路之后,一定要先确定好dp数组的含义,不要模糊不清地就去写状态转移方程. 二.还么想好 ...

  6. ZOJ 3537 Cake(凸包+区间DP)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形 ...

  7. ZOJ 3537 Cake 求凸包 区间DP

    题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...

  8. 区间DP 青蛙的烦恼

    池塘中有n片荷叶恰好围成了一个凸多边形,有一只小青蛙恰好站在1号荷叶上,小青蛙想通过最短的路程遍历所有的荷叶(经过一个荷叶一次且仅一次),小青蛙可以从一片荷叶上跳到另外任意一片荷叶上. 输入数据(fr ...

  9. 区间DP 等腰三角形

    题目描述:给定一个正N边形,可以通过连线将这个多边形分割成N-2个三角形,问这N-2个三角形中恰有k个等腰三角形的分割方法有多少?这个值可能很大,输出对9397取模的结果.数据范围:n,k <= ...

  10. 动态规划 之 区间DP练习

    前言 \(Loj\) 放上了那么多<信息学奥赛一本通>上的题(虽然我并没有这本书),我要给它点一个大大的赞 ^_^ 以后分类刷题不愁啦! 正文 那就一道道说吧. 石子合并 将 \(n\) ...

随机推荐

  1. cookie、localstroage与sessionstroage的一些优缺点

    1.    Cookie 在前端开发中,尽量少用cooie,原因: (1)   cookie限制大小,约4k左右,不适合存储业务数据,尤其是数据量较大的值: (2)   cookie会每次随http请 ...

  2. 南邮综合题writeup

    http://teamxlc.sinaapp.com/web3/b0b0ad119f425408fc3d45253137d33d/index.php fuckjs直接console得到地址 http: ...

  3. Django 1.10中文文档-第一个应用Part7-自定义管理站点

    开发第一个Django应用,Part7 本教程上接Part6.将继续完成这个投票应用,本节将着重讲解如果用Django自动生成后台管理网站. 自定义管理表单 通过admin.site.register ...

  4. 关于分布式Session 的几种实现方式

    分布式Session的几种实现方式 1.基于数据库的Session共享 2.基于NFS共享文件系统 3.基于memcached 的session,如何保证 memcached 本身的高可用性? 4. ...

  5. 关于"轉淚點"与"轉捩點"

    经常看台湾偶像剧或台湾综艺节目的人,一定听过"转泪点"这个词,虽然我一直不知道这三个字具体是怎么写, 但其意思很容易明白,就是"转折点"的意思.今天无聊在看凤凰 ...

  6. TCP的状态兼谈Close_Wait和Time_Wait的状态

    原文链接: http://www.2cto.com/net/201208/147485.html TCP的状态兼谈Close_Wait和Time_Wait的状态   一 TCP的状态: 1).LIST ...

  7. 使用情况查询top命令

    top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器.下面详细介绍它的使用方法. top - 01:06:48 up 1:22, 1 ...

  8. HDU-2222

    Keywords Search Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. hdu 1848(SG函数)

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  10. 洛谷P1634 禽兽的传染病 题解

    题目传送门 最近都在刷红色的水题... 这道题因为是不断地传染,所以直接求幂次方就好啦... 但是一测样例WA了... 原来x初始需要加1... 提交评测WA了... 原来要开long long .. ...