之前的二叉排序树,平衡二叉树都是基于二叉树的实现,但是在搜索过程中,效率和树的深度有关,所以就想到把二叉树改为多叉树,B树和B+树都基于多叉树的实现

多路查找树

B树

定义

 

应用场景

 

B+树

涉及到遍历的场景,B树就有明显缺陷了,需要类似树的中序遍历,而这样的IO开销是很大的,从而就引出了B+树

定义

也就是说,真正的数据存在叶子结点,其它结点存放的都是叶子结点的索引
随机查询则从根结点开始遍历,顺序查询则可以从最左侧的叶子结点遍历
 

应用场景

 

数据库数据结构

大多数数据库,如mysql,底层的数据结构也是采用B+树来实现
1.树的深度会很大影响搜索效率,每多一层,就多一次IO,所以一般而言树深度越小越好,而B树/B+树支持多阶,符合要求
2.数据量大了,就会出现索引,索引多了也会占据存储空间,B+树只在叶子结点存储真实数据,其它结点存储索引,可以提高索引结点的空间利用率
3.结合磁盘特点,磁盘寻找数据需要经历三个时间,寻道时间旋转时间传送时间,而其中寻道时间消耗的时间最长。磁盘读取数据是以盘块(block)为基本单位的。位于同一盘块中的所有数据都能被一次性全部读取出来。而磁盘IO代价主要花费在查找时间Ts上。因此我们应该尽量将相关信息存放在同一盘块,同一磁道中。或者至少放在同一柱面或相邻柱面上,以求在读/写信息时尽量减少磁头来回移动的次数。所以一般数据库中的B+树采用与盘块大小相同的阶数。
 
盘块:也就是扇区,一般是连续的512字节
寻道时间:磁头找到对应的磁道
旋转时间:在磁道上通过旋转找到对应的数据
传送时间:通过计算机总线加载到内存
 

参考资料

从磁盘的使用角度来说明数据结构的应用场景
//B+树和在数据库innodb的应用

数据结构(十一)B树的更多相关文章

  1. D&F学数据结构系列——B树(B-树和B+树)介绍

    B树 定义:一棵B树T是具有如下性质的有根树: 1)每个节点X有以下域: a)n[x],当前存储在X节点中的关键字数, b)n[x]个关键字本身,以非降序存放,因此key1[x]<=key2[x ...

  2. Go 数据结构--二分查找树

    Go 数据结构--二分查找树 今天开始一个Go实现常见数据结构的系列吧.有时间会更新其他数据结构. 一些概念 二叉树:二叉树是每个节点最多有两个子树的树结构. 完全二叉树:若设二叉树的高度为h,除第 ...

  3. 【经典数据结构】B树与B+树

    本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 维基百科对B树的定义为“在计算机科学中,B树 ...

  4. Linux 内核中的数据结构:基数树(radix tree)

    转自:https://www.cnblogs.com/wuchanming/p/3824990.html   基数(radix)树 Linux基数树(radix tree)是将指针与long整数键值相 ...

  5. 数据结构---平衡查找树之B树和B+树(转)

    本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 前面讲解了平衡查找树中的2-3树以及其实现红 ...

  6. 【经典数据结构】B树与B+树(转)

    本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 维基百科对B树的定义为“在计算机科学中,B树 ...

  7. 【经典数据结构】B树与B+树的解释

    本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 前面讲解了平衡查找树中的2-3树以及其实现红 ...

  8. 数据结构-PHP 线段树的实现

    转: 数据结构-PHP 线段树的实现 1.线段树介绍 线段树是基于区间的统计查询,线段树是一种 二叉搜索树,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点.使用线段树可以快速的查 ...

  9. 算法与数据结构(十一) 平衡二叉树(AVL树)

    今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...

  10. 算法与数据结构(十一) 平衡二叉树(AVL树)(Swift版)

    今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...

随机推荐

  1. flask中current_app._get_current_object()与current_app有什么区别?

    https://segmentfault.com/q/1010000005865632/a-1020000005865704

  2. wordcount(C语言)

    写在前面 上传的作业代码与测试代码放在GitHub上了 https://github.com/IHHHH/gitforwork 本次作业用的是C语言来完成,因为个人能力与时间关系,只完成了基本功能,扩 ...

  3. centos7通过阿里云配置docker加速镜像

    针对Docker客户端版本大于1.10.0的用户 您可以通过修改daemon配置文件/etc/docker/daemon.json来使用加速器: sudo mkdir -p /etc/docker s ...

  4. Cassandra go语言client使用

    关于什么是cassandra,可以参考: http://blog.csdn.net/zyz511919766/article/details/38683219 http://cassandra.apa ...

  5. 【pentaho】【kettle】【Data Integration】试用

    要做数据分析,领导让研究一下kettle. 先占个坑. 这里有个3.0的文档: http://wenku.baidu.com/link?url=hvw_cOBIXLXSGvftkGhXQic3CLC7 ...

  6. 解决线上Tomcat启动慢

    vim /application/jdk/jre/lib/security/java.security # securerandom.source=file:/dev/randomsecurerand ...

  7. birt 日志打印

    在birt初始initialize 方法里,定义日志输出方法 importPackage(Packages.java.util.logging); importPackage(Packages.log ...

  8. SIP UserAgent (B2BUA client)——linphonec

    1.linphone编译 linphone一般用在android/ios/windows/mobile上,但是没有图形界面的linphonec命令行程序用在资源紧张的硬件平台上也跟pjsip命令行一样 ...

  9. POJ3176:Cow Bowling(数字三角形问题)

    地址:http://poj.org/problem?id=3176 题目解析:没什么好说的,之前上课时老师讲过.从下往上找,每一个三角形的顶点可由两个角加上顶点的值 两种方式得到 ,用dp数组保存下最 ...

  10. JAVA与ACM

    这两天学了一下JAVA的语法,还没有学习后面的核心地方,突然间觉得JAVA这门语言很棒,我要在接下来的时间系统的学习一下.就这么愉快地决定了. Java对于大数计算这方面的优势很大.最重要的是代码量小 ...