之前的二叉排序树,平衡二叉树都是基于二叉树的实现,但是在搜索过程中,效率和树的深度有关,所以就想到把二叉树改为多叉树,B树和B+树都基于多叉树的实现

多路查找树

B树

定义

 

应用场景

 

B+树

涉及到遍历的场景,B树就有明显缺陷了,需要类似树的中序遍历,而这样的IO开销是很大的,从而就引出了B+树

定义

也就是说,真正的数据存在叶子结点,其它结点存放的都是叶子结点的索引
随机查询则从根结点开始遍历,顺序查询则可以从最左侧的叶子结点遍历
 

应用场景

 

数据库数据结构

大多数数据库,如mysql,底层的数据结构也是采用B+树来实现
1.树的深度会很大影响搜索效率,每多一层,就多一次IO,所以一般而言树深度越小越好,而B树/B+树支持多阶,符合要求
2.数据量大了,就会出现索引,索引多了也会占据存储空间,B+树只在叶子结点存储真实数据,其它结点存储索引,可以提高索引结点的空间利用率
3.结合磁盘特点,磁盘寻找数据需要经历三个时间,寻道时间旋转时间传送时间,而其中寻道时间消耗的时间最长。磁盘读取数据是以盘块(block)为基本单位的。位于同一盘块中的所有数据都能被一次性全部读取出来。而磁盘IO代价主要花费在查找时间Ts上。因此我们应该尽量将相关信息存放在同一盘块,同一磁道中。或者至少放在同一柱面或相邻柱面上,以求在读/写信息时尽量减少磁头来回移动的次数。所以一般数据库中的B+树采用与盘块大小相同的阶数。
 
盘块:也就是扇区,一般是连续的512字节
寻道时间:磁头找到对应的磁道
旋转时间:在磁道上通过旋转找到对应的数据
传送时间:通过计算机总线加载到内存
 

参考资料

从磁盘的使用角度来说明数据结构的应用场景
//B+树和在数据库innodb的应用

数据结构(十一)B树的更多相关文章

  1. D&F学数据结构系列——B树(B-树和B+树)介绍

    B树 定义:一棵B树T是具有如下性质的有根树: 1)每个节点X有以下域: a)n[x],当前存储在X节点中的关键字数, b)n[x]个关键字本身,以非降序存放,因此key1[x]<=key2[x ...

  2. Go 数据结构--二分查找树

    Go 数据结构--二分查找树 今天开始一个Go实现常见数据结构的系列吧.有时间会更新其他数据结构. 一些概念 二叉树:二叉树是每个节点最多有两个子树的树结构. 完全二叉树:若设二叉树的高度为h,除第 ...

  3. 【经典数据结构】B树与B+树

    本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 维基百科对B树的定义为“在计算机科学中,B树 ...

  4. Linux 内核中的数据结构:基数树(radix tree)

    转自:https://www.cnblogs.com/wuchanming/p/3824990.html   基数(radix)树 Linux基数树(radix tree)是将指针与long整数键值相 ...

  5. 数据结构---平衡查找树之B树和B+树(转)

    本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 前面讲解了平衡查找树中的2-3树以及其实现红 ...

  6. 【经典数据结构】B树与B+树(转)

    本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 维基百科对B树的定义为“在计算机科学中,B树 ...

  7. 【经典数据结构】B树与B+树的解释

    本文转载自:http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html 前面讲解了平衡查找树中的2-3树以及其实现红 ...

  8. 数据结构-PHP 线段树的实现

    转: 数据结构-PHP 线段树的实现 1.线段树介绍 线段树是基于区间的统计查询,线段树是一种 二叉搜索树,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点.使用线段树可以快速的查 ...

  9. 算法与数据结构(十一) 平衡二叉树(AVL树)

    今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...

  10. 算法与数据结构(十一) 平衡二叉树(AVL树)(Swift版)

    今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...

随机推荐

  1. mysql IPv4 IPv6

    w如何通过一个mysql方法,而不是借助脚本判断?INET6_ATON(expr) https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-func ...

  2. 移除 URL 中的 index.php

    w 将.htaaccess 放至该站点根目录. http://codeigniter.org.cn/user_guide/general/urls.html 如果你的 Apache 服务器启用了 mo ...

  3. js的class属性获取、增加、移除

    2018年4月10日,北京城的第三份工作已经开始,坚信自己在这里能学到很多,加油! 贴代码,昨天回顾了一点js知识: <script> $(function(){ //赋予一个点击事件 $ ...

  4. HTTP和HTTPS的请求和响应

    HTTP协议(HyperText Transfer Protocol,超文本传输协议):是一种发布和接收 HTML页面的方法.HTTPS(Hypertext Transfer Protocol ove ...

  5. SSH secure shell 原理与运用

    转: http://www.ruanyifeng.com/blog/2011/12/ssh_remote_login.html 作者: 阮一峰 日期: 2011年12月21日 SSH是每一台Linux ...

  6. CentOS 6下OpenCV的安装与配置

    自己按照网上的教程一步一步来的 http://www.jb51.net/os/RedHat/280309.html 虚拟机环境 CentOS 6.5 内核版本:4.1.14 64位 gcc,gcc 4 ...

  7. 转载SQL_trace 和10046使用

    SQL_TRACE是Oracle提供的用于进行SQL跟踪的手段,是强有力的辅助诊断工具.在日常的数据库问题诊断和解决中,SQL_TRACE是非常常用的方法.本文就SQL_TRACE的使用作简单探讨,并 ...

  8. Mac电脑下-nodejs安装卸载升级

    一.Mac 安装nodejs: 1:brew install node 2:官网上下载指定版本(.pkg)双击安装 二.Mac 卸载nodejs: 1: brew的安装方式的卸载:   brew un ...

  9. 格式化字符串函数sprintf

    sprintf.snprintf相关函数的主要功能是把格式化的数据写入某个字符串.如最常见的应用是将整数或浮点数转换为字符串. 1.sprintf 将格式化的数据写入字符串,并自动在末尾加上一个空字符 ...

  10. MySQL 温故知心(二) 事务的隔离级别

    事务的隔离级别 A事务做了操作 没有提交 对B事务来说 就等于没做 获取的都是之前的数据但是 在A事务中查询的话 查到的都是操作之后的数据没有提交的数据只有自己看得到,并没有update到数据库 查看 ...