题目链接

把每个点和能跳到的点连边,于是就构成了一个森林。

查询操作就是该点到根的路径长度,修改操作就相当于删边再重新连边。

显然是\(LCT\)的强项。

查询时\(access(x),splay(x)\),然后输出\(size[x]\)就行了。

修改时\(access(x),splay(x)\),然后双向断掉\(x\)与左儿子的边,然后直接和\(x+y\)连边即可。

简化版的\(LCT\)

#include <cstdio>
#define R register int
#define I inline void
#define lc c[x][0]
#define rc c[x][1]
const int MAXN = 300010;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){ if(ch == '-') w = -1; ch = getchar(); }
while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); }
return s * w;
}
int f[MAXN], c[MAXN][2], v[MAXN], s[MAXN], sz[MAXN], st[MAXN], tag[MAXN];
inline int nroot(R x){
return c[f[x]][0] == x || c[f[x]][1] == x;
}
I pushup(R x){
s[x] = s[lc] ^ s[rc] ^ v[x];
sz[x] = sz[lc] + sz[rc] + 1;
}
I swap(R x){
lc ^= rc; rc = lc ^ rc; lc ^= rc; tag[x] ^= 1;
}
I pushdown(R x){
if(tag[x]){
swap(lc); swap(rc);
tag[x] = 0;
}
}
I rotate(R x){
R y = f[x], z = f[y], k = c[y][1] == x, w = c[x][!k];
if(nroot(y)) c[z][c[z][1] == y] = x;
c[x][!k] = y; c[y][k] = w; f[y] = x; f[x] = z;
if(w) f[w] = y;
pushup(y);
}
I splay(R x){
R y = x, z = 0;
st[++z] = y;
while(nroot(y)) st[++z] = y = f[y];
while(z) pushdown(st[z--]);
while(nroot(x)){
y = f[x]; z = f[y];
if(nroot(y)) (c[z][1] == y) ^ (c[y][1] == x) ? rotate(x) : rotate(y);
rotate(x);
}
pushup(x);
}
I access(R x){
for(R y = 0; x; x = f[y = x]){
splay(x); rc = y; pushup(x);
}
}
int n, m, opt, a, b;
int main(){
n = read();
for(R i = 1; i <= n; ++i){
a = read();
if(i + a <= n) f[i] = i + a;
}
m = read();
while(m--){
opt = read(); a = read() + 1;
switch(opt){
case 1 : access(a); splay(a); printf("%d\n", sz[a]); break;
case 2 : b = read(); access(a); splay(a); c[a][0] = f[c[a][0]] = 0; if(a + b <= n) f[a] = a + b; break;
}
}
return 0;
}

【洛谷 P3203】 [HNOI2010]弹飞绵羊(LCT)的更多相关文章

  1. 洛谷P3203 [HNOI2010] 弹飞绵羊 [LCT]

    题目传送门 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...

  2. 洛谷 P3203 [HNOI2010]弹飞绵羊 解题报告

    P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一 ...

  3. 洛谷P3203 [HNOI2010]弹飞绵羊(LCT,Splay)

    洛谷题目传送门 关于LCT的问题详见我的LCT总结 思路分析 首先分析一下题意.对于每个弹力装置,有且仅有一个位置可以弹到.把这样的一种关系可以视作边. 然后,每个装置一定会往后弹,这不就代表不存在环 ...

  4. [洛谷P3203][HNOI2010]弹飞绵羊

    题目大意:有$n$个节点,第$i$个节点有一个弹力系数$k_i$,当到达第$i$个点时,会弹到第$i+k_i$个节点,若没有这个节点($i+k_i>n$)就会被弹飞.有两个操作: $x:$询问从 ...

  5. Bzoj2002/洛谷P3203 [HNOI2010]弹飞绵羊(分块)

    题面 Bzoj 洛谷 题解 大力分块,分块大小\(\sqrt n\),对于每一个元素记一下跳多少次能跳到下一个块,以及跳到下一个块的哪个位置,修改的时候时候只需要更新元素所在的那一块即可,然后询问也是 ...

  6. 洛谷 P3203 [HNOI2010]弹飞绵羊 || bzoj2002

    看来这个lct板子的确没什么问题 好像还可以分块做 #include<cstdio> #include<algorithm> using namespace std; type ...

  7. 洛谷 P3203 [HNOI2010]弹飞绵羊 分块

    我们只需将序列分成 n\sqrt{n}n​ 块,对于每一个点维护一个 val[i]val[i]val[i],to[i]to[i]to[i],分别代表该点跳到下一个块所需要的代价以及会跳到的节点编号.在 ...

  8. 洛谷 P3203 [HNOI2010]弹飞绵羊

    题意简述 有n个点,第i个点有一个ki,表示到达i这个点后可以到i + ki这个点 支持修改ki和询问一点走几次能走出所有点两个操作 题解思路 分块, 对于每个点,维护它走到下一块所经过的点数,它走到 ...

  9. [Luogu P3203] [HNOI2010]弹飞绵羊 (LCT维护链的长度)

    题面 传送门:洛谷 Solution 这题其实是有类似模型的. 我们先考虑不修改怎么写.考虑这样做:每个点向它跳到的点连一条边,最后肯定会连成一颗以n+1为根的树(我们拿n+1代表被弹出去了).题目所 ...

  10. P3203 [HNOI2010]弹飞绵羊(LCT)

    弹飞绵羊 题目传送门 解题思路 LCT. 将每个节点的权值设为\(1\),连接\(i\)和\(i+ki\),被弹飞就连上\(n\),维护权值和\(sum[]\).从\(j\)弹飞需要的次数就是\(sp ...

随机推荐

  1. selenium Object Page 设计模式理解及实现!

    Page Object模式是Selenium中的一种测试设计模式,主要是将每一个页面设计为一个Class,其中包含页面中需要测试的元素(按钮,输入框,标题 等),这样在Selenium测试页面中可以通 ...

  2. 数据输出保存生成word文档

    ob_start(); //打开缓冲区 $header_str = '<html xmlns:o="urn:schemas-microsoft-com:office:office&qu ...

  3. json 和 pickle

    用于序列化的两个模块 json:用于字符串和python数据类型间进行转换 pickle:用于python特有的类型和python的数据类型间进行转换 json模块提供了四个功能:dumps dump ...

  4. bzoj2820-GCD

    题意 \(T\le 10^4\) 次询问 \(n,m\) ,求 \[ \sum _{i=1}^n\sum _{j=1}^m[gcd(i,j)\text { is prime}] \] 分析 这题还是很 ...

  5. 【二】shiro入门 之 身份验证

    大体步骤如下: 1.首先通过new IniSecurityManagerFactory 并指定一个ini 配置文件来创建一个SecurityManager工厂: 2.接着获取SecurityManag ...

  6. python 内存问题(glibc库的malloc相关)

    题记: 这是工作以来困扰我最久的问题.python 进程内存占用问题. 经过长时间断断续续的研究,终于有了一些结果. 项目(IM服务器)中是以C做底层驱动python代码,主要是用C完成 网络交互部分 ...

  7. 【Revit API】Revit读取当前rvt的所有视图与其名称

    1)读取所有视图: public static ViewSet GetAllViews(Document doc) { ViewSet views = new ViewSet(); FilteredE ...

  8. 【CF331E】Biologist(网络流,最小割)

    [CF331E]Biologist(网络流,最小割) 题面 洛谷 翻译: 有一个长度为\(n\)的\(01\)串,将第\(i\)个位置变为另外一个数字的代价是\(v_i\). 有\(m\)个要求 每个 ...

  9. BZOJ2006:[NOI2010]超级钢琴——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2006 https://www.luogu.org/problemnew/show/P2048#su ...

  10. linux安全第二周学习总结

    一.实验过程 cd LinuxKernel/linux-3.9.4 qemu -kernel arch/x86/boot/bzImage 然后cd mykernel 您可以看到qemu窗口输出的内容的 ...