++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给定一个二叉树,节点的值仅限于从0-9,每一个从根节点达到叶子节点的路径代表一个数字。

一个例子,如果根节点到叶子节点的路径是 1->2->3,那么代表这个数字是123。

寻找所有路径代表的数字的和。

例如:

    1
/ \
2 3

从根节点到叶子节点的路径是 1->2 代表的数字是 12.
从根节点到叶子节点的路径是 1->3 代表的数字是  13.

返回和为 sum = 12 + 13 = 25.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.

An example is the root-to-leaf path 1->2->3 which represents the number 123.

Find the total sum of all root-to-leaf numbers.

For example,

    1
/ \
2 3

The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.

Return the sum = 12 + 13 = 25.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
test.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
int sumNumbers(TreeNode *root, int last)
{
    /*没进入一层都要把last乘以10*/
    if(root->left == NULL && root->right == NULL)
    {
        return last * 10 + root->val;
    }
    else if(root->left == NULL)
    {
        return sumNumbers(root->right, last * 10 + root->val);
    }
    else if(root->right == NULL)
    {
        return sumNumbers(root->left, last * 10 + root->val);
    }
    else
    {
        return sumNumbers(root->left, last * 10 + root->val) + sumNumbers(root->right, last * 10 + root->val);
    }
}
int sumNumbers(TreeNode *root)
{
    /*空树*/
    if(root == NULL)
    {
        return 0;
    }
    else
    {
        return sumNumbers(root, 0);
    }
}

// 树中结点含有分叉,
//                  8
//              /       \
//             6         1
//           /   \
//          9     2
//               / \
//              4   7
int main()
{
    TreeNode *pNodeA1 = CreateBinaryTreeNode(8);
    TreeNode *pNodeA2 = CreateBinaryTreeNode(6);
    TreeNode *pNodeA3 = CreateBinaryTreeNode(1);
    TreeNode *pNodeA4 = CreateBinaryTreeNode(9);
    TreeNode *pNodeA5 = CreateBinaryTreeNode(2);
    TreeNode *pNodeA6 = CreateBinaryTreeNode(4);
    TreeNode *pNodeA7 = CreateBinaryTreeNode(7);

ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3);
    ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5);
    ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7);

PrintTree(pNodeA1);

//81 + 8627 + 8624 + 869 = 18201
    cout << sumNumbers(pNodeA1) << endl;

DestroyTree(pNodeA1);
    return 0;
}

结果输出:
18201
BinaryTree.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
#ifndef _BINARY_TREE_H_
#define _BINARY_TREE_H_

struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

TreeNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeNode *pParent,
                      TreeNode *pLeft, TreeNode *pRight);
void PrintTreeNode(TreeNode *pNode);
void PrintTree(TreeNode *pRoot);
void DestroyTree(TreeNode *pRoot);

#endif /*_BINARY_TREE_H_*/

BinaryTree.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

//创建结点
TreeNode *CreateBinaryTreeNode(int value)
{
    TreeNode *pNode = new TreeNode(value);

return pNode;
}

//连接结点
void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeNode *pRoot)
{
    PrintTreeNode(pRoot);

if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeNode *pLeft = pRoot->left;
        TreeNode *pRight = pRoot->right;

delete pRoot;
        pRoot = NULL;

DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}


 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

【二叉树的递归】07路径组成数字的和【Sum Root to Leaf Numbers】的更多相关文章

  1. Leetcode之深度优先搜索(DFS)专题-129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers)

    Leetcode之深度优先搜索(DFS)专题-129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers) 深度优先搜索的解题详细介绍,点击 给定一个二叉树,它的每个结点都存放 ...

  2. LeetCode 129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers)

    题目描述 给定一个二叉树,它的每个结点都存放一个 0-9 的数字,每条从根到叶子节点的路径都代表一个数字. 例如,从根到叶子节点路径 1->2->3 代表数字 123. 计算从根到叶子节点 ...

  3. [LeetCode] 129. Sum Root to Leaf Numbers 求根到叶节点数字之和

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  4. [Swift]LeetCode129. 求根到叶子节点数字之和 | Sum Root to Leaf Numbers

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  5. [Leetcode] Sum root to leaf numbers求根到叶节点的数字之和

    Given a binary tree containing digits from0-9only, each root-to-leaf path could represent a number. ...

  6. [LeetCode] Sum Root to Leaf Numbers 求根到叶节点数字之和

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  7. 129. Sum Root to Leaf Numbers pathsum路径求和

    [抄题]: Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a ...

  8. LeetCode OJ:Sum Root to Leaf Numbers(根到叶节点数字之和)

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  9. [LeetCode]129. Sum Root to Leaf Numbers路径数字求和

    DFS的标准形式 用一个String记录路径,最后判断到叶子时加到结果上. int res = 0; public int sumNumbers(TreeNode root) { if (root== ...

随机推荐

  1. 嵌入式专题: S5PV210 - MPEG4编码

    我想说不台的平台,如tiny210和x210.它们的头文件是有稍微区别的. 我这个是x210下的代码.但都须要注意的是NV12T与NV12的问题,默认要求输入的图片是NV12T,经过调整之后,能够同意 ...

  2. html5小趣味知识点系列(一)spellcheck

    发现一些h5的系ode知识点增加一些趣味性 实用性 不敢妄自评论  觉得有用就用一下  没用就路过一下 spellcheck属性 它的功能是针对用户输入的文本内容进行拼写和语法检查 用于input 和 ...

  3. c#中关于compare比较的一点注意事项

    一直没有太注意,今天发现在compare比较两个字符串的时候出了点小问题 如果我设置了两个字符串 一个是“2”,一个是“12” 那么在比较的时候 第一个会大于第二个: 如果第一个是“02”,第二个是“ ...

  4. 【BZOJ1109】[POI2007]堆积木Klo 二维偏序

    [BZOJ1109][POI2007]堆积木Klo Description Mary在她的生日礼物中有一些积木.那些积木都是相同大小的立方体.每个积木上面都有一个数.Mary用他的所有积木垒了一个高塔 ...

  5. [Matlab绘图][三维图形][三维曲线基本函数+三维曲面+其他三维图形]

    1.绘制三维图形的基本函数 最基本的三维绘图函数为plot3: plot3与plot用法十分相似,调用格式: plot(x1,y1,z1,选项1,x2,y2,z2,选项2,...,xn,yn,zn,选 ...

  6. mysql时间相减的问题

    MySQL中时间不能直接相减,如果日.分.时不同,相减结果是错误的 mysql> select t1,t2,t2-t1 from mytest;   +--------------------- ...

  7. Spring标签@Aspect-实现面向方向编程(@Aspect的多数据源自动加载)——SKY

    从Spring 2.0开始,可以使用基于schema及@AspectJ的方式来实现AOP.由于@Aspect是基于注解的,因此要求支持注解的5.0版本以上的JDK. 环境要求:    1. mybit ...

  8. Python高级入门01-property

    JAVA中存在对变量 私有化,公开,保护... 私有化时候,需要提供一个公开的get 和 set方法对外公开,让别人进行调用 python中同样存在    私有化变量定义是__是这个双下划线,eg:_ ...

  9. netstat命令简单使用

    1.适用范围 该命令用于打印网络连接.路由表.接口统计.伪装连接.多播成员等信息. (netstat已经过时,现在使用ss命令,所以本文不会作过多翻译,只着重一些重要部分) 2.语法概览 netsta ...

  10. 【python】-- 递归函数、高阶函数、嵌套函数、匿名函数

    递归函数 在函数内部,可以调用其他函数.但是在一个函数在内部调用自身,这个函数被称为递归函数 def calc(n): print(n) if int(n/2) == 0: #结束符 return n ...