题目描述

小明有许多潜在的天赋,他希望学习这些天赋来变得更强。正如许多游戏中一样,小明也有n种潜在的天赋,但有一些天赋必须是要有前置天赋才能够学习得到的。也就是说,有一些天赋必须是要在学习了另一个天赋的条件下才能学习的。比如,要想学会"开炮",必须先学会"开枪"。一项天赋可能有多个前置天赋,但只需习得其中一个就可以学习这一项天赋。上帝不想为难小明,于是小明天生就已经习得了1号天赋-----"打架"。于是小明想知道学习完这n种天赋的方案数,答案对1,000,000,007取模。(两种方案不同指的是存在某种天赋的前置天赋不同)

输入

第一行一个整数n。
接下来是一个n*n的01矩阵,第i行第j列为1表示习得天赋j的一个前置天赋为i。
数据保证第一列和主对角线全为0。
n<=300

输出

第一行一个整数,问题所求的方案数。

样例输入

8
01111111
00101001
01010111
01001111
01110101
01110011
01111100
01110110

样例输出

72373


题解

矩阵树定理

读明白题以后发现求的就是外向树形图的个数,于是使用矩阵树定理解决。

与求生成树个数不同的是,外向树形图用的矩阵是 入度矩阵-邻接矩阵 ,并且删去的一行一列不能随便选择,必须是根所在的那一行那一列。

然后高斯消元求一下行列式的值即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 310
#define mod 1000000007
using namespace std;
typedef long long ll;
ll a[N][N];
char str[N];
inline ll pow(ll x , ll y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
int main()
{
int n , i , j , k , d = 0;
ll t , ans = 1;
scanf("%d" , &n);
for(i = 0 ; i < n ; i ++ )
{
scanf("%s" , str);
for(j = 0 ; j < n ; j ++ )
if(str[j] == '1')
a[j][j] ++ , a[i][j] -- ;
}
for(i = 1 ; i < n ; i ++ )
{
for(j = i ; j < n ; j ++ )
if(a[j][i])
break;
if(j >= n) continue;
if(j != i)
for(d ^= 1 , k = i ; k < n ; k ++ )
swap(a[i][k] , a[j][k]);
ans = ans * a[i][i] % mod;
for(t = pow(a[i][i] , mod - 2) , j = i ; j < n ; j ++ ) a[i][j] = a[i][j] * t % mod;
for(j = i + 1 ; j < n ; j ++ )
for(t = a[j][i] , k = i ; k < n ; k ++ )
a[j][k] = (a[j][k] - a[i][k] * t % mod + mod) % mod;
}
for(i = 1 ; i < n ; i ++ ) ans = ans * a[i][i] % mod;
if(d) ans = (mod - ans) % mod;
printf("%lld\n" , ans);
return 0;
}

【bzoj4894】天赋 矩阵树定理的更多相关文章

  1. BZOJ4894:天赋(矩阵树定理)

    Description 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有一些天赋必须是要有前置天赋才能够学习得到的. 也就是说,有一些天赋必须是要在 ...

  2. 【BZOJ4894】天赋(矩阵树定理)

    [BZOJ4894]天赋(矩阵树定理) 题面 BZOJ Description 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有 一些天赋必须是要有 ...

  3. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  4. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  5. BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]

    传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...

  6. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  7. 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)

    [LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...

  8. 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)

    传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...

  9. [CF917D]Stranger Trees[矩阵树定理+解线性方程组]

    题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边 ...

随机推荐

  1. JSON 与 XML 的比较 - iOS

    在与 web 服务进行数据交换的时候,通常支持两种主要的数据格式(即:JavaScript 对象表示法 JSON 与可扩展标记语言 XML),两者在可读性上都不分高下,接下来对此进行简单的总结和分析, ...

  2. js一键复制到剪切板

    <div id='demo'>我就是被复制的内容<span>点击复制<span></div> $('#demo').on('click','span', ...

  3. docker快速安装jenkins

    用过docker的人,可能真的很难忍受再一步步二进制安装了,好了话不多说,感慨一下jenkins实现自动化发布构建真的很方便. 推荐一个学习的好地方https://m.w3cschool.cn/jen ...

  4. Maven - 修改本地仓库位置

    默认的本地仓库是在:当前的用户目录/.m2/repository 修改位置: 1. 打开maven的conf/settings.xml,找到如下图这一段: 2. 把<localRepositor ...

  5. 解决php文字及图片显示乱码的问题

    我们在学习PHP的过程中,想必有不少新手朋友们都遇到过乱码的问题,解决乱码问题不仅是小白们必须掌握的基础知识点,也是最为常见的PHP面试题之一.下面就结合简单代码示例给大家总结介绍下,PHP遇到乱码时 ...

  6. 海龟绘图turtle模块的使用

    在本章中,我们将编写简短的.简单的程序来创建漂亮的.复杂的视觉效果.为了做到这一点,我们可以使用海龟作图软件.在海龟作图中,我们可以编写指令让一个虚拟的(想象中的)海龟在屏幕上来回移动.这个海龟带着一 ...

  7. SPOJ1026 概率DP

    Favorite Dice BuggyD loves to carry his favorite die around. Perhaps you wonder why it's his favorit ...

  8. 笔记-select,poll,epoll

    笔记-select,poll,epoll 1.      I/O多路复用 I/O多路复用是指:通过一种机制或一个进程,可以监视多个文件描述符,一旦描述符就绪(写或读),能够通知程序进行相应的读写操作. ...

  9. PHP.25-TP框架商城应用实例-后台2-商品列表页-搜索、翻页、排序

    商品列表页 1.翻页 控制器GoodsController.class.php添加方法lst(),显示列表页 在商品模型GoodsModel.class.php类中添加search方法 /** *实现 ...

  10. android stadio 打开别人的工程 一直在编译中

    这是因为,他工程的gradle 配置,在你本地找不到,所以,会去网上下.然后解压,使用.这是一个很漫长的过程. *那么怎么做呢 修改项目工程的gradle/wrapper/gradle-wrapper ...