Redis1 介绍和字典
Redis介绍
redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(列表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。
1. 使用Redis有哪些好处? (1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1) (2) 支持丰富数据类型,支持string,list,set,sorted set,hash (3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行 (4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除 2. redis相比memcached有哪些优势? (1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型 (2) redis的速度比memcached快很多 (3) redis可以持久化其数据 3. redis常见性能问题和解决方案: (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件 (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次 (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内 (4) 尽量避免在压力很大的主库上增加从库 (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3... 这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。 4. MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据 相关知识:redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略: voltile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰 volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰 volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰 allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰 allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰 no-enviction(驱逐):禁止驱逐数据 5. Memcache与Redis的区别都有哪些? 1)、存储方式 Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。 Redis有部份存在硬盘上,这样能保证数据的持久性。 2)、数据支持类型 Memcache对数据类型支持相对简单。 Redis有复杂的数据类型。 3),value大小 redis最大可以达到1GB,而memcache只有1MB 6. Redis 常见的性能问题都有哪些?如何解决? 1).Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。 2).Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。 3).Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。 4). Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内 7, redis 最适合的场景 Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用Memcached,何时使用Redis呢? 如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:
、Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
、Redis支持数据的备份,即master-slave模式的数据备份。
、Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。 (1)、会话缓存(Session Cache) 最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗? 幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。 (2)、全页缓存(FPC) 除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。 再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。 此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。 (3)、队列 Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。 如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。例如,Celery有一个后台就是使用Redis作为broker,你可以从这里去查看。 (4),排行榜/计数器 Redis在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“user_scores”,我们只需要像下面一样执行即可: 当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行: ZRANGE user_scores 0 10 WITHSCORES Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在这里看到。 (5)、发布/订阅 最后(但肯定不是最不重要的)是Redis的发布/订阅功能。发布/订阅的使用场景确实非常多。我已看见人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用Redis的发布/订阅功能来建立聊天系统!(不,这是真的,你可以去核实)。 Redis提供的所有特性中,我感觉这个是喜欢的人最少的一个,虽然它为用户提供如果此多功能。
Redis的优势及比较
redis是一个软件,帮助开发者对一台机器的内存进行操作
mysql是一个软件,帮助开发者对一台机器的硬盘进行操作
redis默认端口是:6379
mysql默认端口是:3306
关键字:
缓存,优先去redis中获取,如果没有就去数据库。
Redis安装和基本使用
方式一: -redis 软件
-yum install redis
redis-server /etc/redis.conf 配置文件:
bind 0.0.0.0
port 6379
requirepass fdfafa
pip install redis
python连接redis的模块
连接池
redis-py使用connection pool来管理对一个redis server的所有连接,避免每次建立、释放连接的开销。默认,每个Redis实例都会维护一个自己的连接池。可以直接建立一个连接池,然后作为参数Redis,这样就可以实现多个Redis实例共享一个连接池。
redis_poll.py里:
import redis
POLL = redis.ConnectionPool(host='127.0.0.1',port=6379,password='luffy1234',max_connections=1000)
在别的py文件
# 连接池
# max_connections最多创建1000个连接
#max_connections 设置多少就多少个连接
from redis_study import redis_poll
conn = redis.Redis(connection_pool=redis_poll.POLL)
字典
Hash操作,redis中Hash在内存中的存储格式如下图:
hset 设置单个值
hset(name, key, value)
conn.hset('k4','username','alex') # name对应的hash中设置一个键值对(不存在,则创建;否则,修改) # 参数:
# name,redis的name
# key,name对应的hash中的key
# value,name对应的hash中的value # 注:
# hsetnx(name, key, value),当name对应的hash中不存在当前key时则创建(相当于添加)
hmset 批量设置值
# 在name对应的hash中批量设置键值对 # 参数:
# name,redis的name
# mapping,字典,如:{'k1':'v1', 'k2': 'v2'} # 如:
# r.hmset('xx', {'k1':'v1', 'k2': 'v2'})
hget 获取单个值
hget(name,key)
val = conn.hget('k4','username')
# 在name对应的hash中获取根据key获取value
hmget 获取多个值
# 在name对应的hash中获取多个key的值 # 参数:
# name,reids对应的name
# keys,要获取key集合,如:['k1', 'k2', 'k3']
# *args,要获取的key,如:k1,k2,k3 # 如:
# r.mget('xx', ['k1', 'k2'])
# 或
# print r.hmget('xx', 'k1', 'k2')
hgetall 获取name对应的all
#获取name对应hash的所有键值 '''
k4:{
username:alex,
age:18
} '''
val=conn.hgetall('k4') #结果
{
username:alex,
age:18
}
hlen 获取个数
hlen(name)
# 获取name对应的hash中键值对的个数
hkeys 获取key值
hkeys(name)
# 获取name对应的hash中所有的key的值
hvals 获取values值
hvals(name)
# 获取name对应的hash中所有的value的值
hexists 判断是否有key值
hexists(name, key)
# 检查name对应的hash是否存在当前传入的key
hdel 删除key
hdel(name,*keys)
# 将name对应的hash中指定key的键值对删除
hincrby 自增值
hincrby(name, key, amount=1)
# 自增name对应的hash中的指定key的值,不存在则创建key=amount
# 参数:
# name,redis中的name
# key, hash对应的key
# amount,自增数(整数)
hincrbyfloat 自增值浮点型
hincrbyfloat(name, key, amount=1.0)
# 自增name对应的hash中的指定key的值,不存在则创建key=amount # 参数:
# name,redis中的name
# key, hash对应的key
# amount,自增数(浮点数) # 自增name对应的hash中的指定key的值,不存在则创建key=amount
hscan 增量式迭代获取
hscan(name, cursor=0, match=None, count=None)
# 增量式迭代获取,对于数据大的数据非常有用,hscan可以实现分片的获取数据,并非一次性将数据全部获取完,从而放置内存被撑爆 # 参数:
# name,redis的name
# cursor,游标(基于游标分批取获取数据)
# match,匹配指定key,默认None 表示所有的key
# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数 # 如:
# 第一次:cursor1, data1 = r.hscan('xx', cursor=0, match=None, count=None)
# 第二次:cursor2, data1 = r.hscan('xx', cursor=cursor1, match=None, count=None)
# ...
# 直到返回值cursor的值为0时,表示数据已经通过分片获取完毕
hscan_iter 实现分批去redis中获取数据
hscan_iter(name, match=None, count=None)
# 利用yield封装hscan创建生成器,实现分批去redis中获取数据 # 参数:
# match,匹配指定key,默认None 表示所有的key
# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数 # 如:
# for item in r.hscan_iter('xx'):
# print item
参考http://www.cnblogs.com/wupeiqi/articles/5132791.html
Redis1 介绍和字典的更多相关文章
- 窥探Swift之数组与字典
说到数组和字典,只要是编过程的小伙伴并不陌生.在Swift中的数组与字典也有着一些让人眼前一亮的特性,今天的博客就来窥探一下Swift中的Array和Dictionary.还是沿袭之前的风格,在介绍S ...
- iOS 字典与JSON相互转换
iOS 字典与JSON相互转换 首先简单说一下为什么会写这种幼稚的文章. 现在的网络请求几乎都是AFN完成的,AFN也为我们写了了JSON转换字典的方法,但是不要忘记后台是一个很爱用JSON的人群,H ...
- python基础知识3——基本的数据类型2——列表,元组,字典,集合
磨人的小妖精们啊!终于可以归置下自己的大脑啦,在这里我要把--整型,长整型,浮点型,字符串,列表,元组,字典,集合,这几个知识点特别多的东西,统一的捯饬捯饬,不然一直脑袋里面乱乱的. 一.列表 1.列 ...
- Cocos2d-x中__Dictionary容器以及实例介绍
__Dictionary类在Cocos2d-x 2.x时代它就是CCDictionary类,它是模仿Objective-C中的NSDictionary类而设计的,通过引用计数管理内存.__Dictio ...
- 第1章 Python介绍
本章将包含Python的介绍,安装以及Python的数据类型及运算符.其中关于数据类型中的字符串.列表.元组和字典后续章节会着重介绍. 1.1 为什么学Python Python是一门简明并强大的面向 ...
- 字典:当索引不好用时2 - 零基础入门学习Python026
字典:当索引不好用时2 让编程改变世界 Change the world by program 上节课我们学习到在一些情况下,比序列更实用的映射类型:字典.我们知道字典也有个关键符号就是大括号(也叫花 ...
- 【WiFi密码破解详细图文教程】ZOL仅此一份 详细介绍从CDlinux U盘启动到设置扫描破解-破解软件论坛-ZOL中关村在线
body { font-family: Microsoft YaHei UI,"Microsoft YaHei", Georgia,Helvetica,Arial,sans-ser ...
- 【算法】字典的诞生:有序数组 PK 无序链表
参考资料 <算法(java)> — — Robert Sedgewick, Kevin Wayne <数据结构> ...
- 自学Python2.4-基本数据类型-字典dict(objct)
Python dict方法总结 一.字典介绍 1.字典概述 ①字典是python中唯一内建的映射类型.又称关联数组或散列②映射类型对象里哈希值(键,key)和指向的对象(值,value)是一对多的的关 ...
随机推荐
- Elasticsearch Java API深入详解
0.题记 之前Elasticsearch的应用比较多,但大多集中在关系型.非关系型数据库与Elasticsearch之间的同步.以上内容完成了Elasticsearch所需要的基础数据量的供给.但想要 ...
- 【Javascript 基础】比较 undefined 和 null 值
JavaScript 中有两个特数值: undefined和null,在比较它们的时候需要留心.在读取未赋值的变量或试图读取对象没有的属性时得到的就是 undefined 值. <!DOCTYP ...
- 如何安装Android模拟器到VM虚拟机
1 像普通安装一样找到ISO镜像文件,该镜像文件名称为"android-x86-2.2-generic.iso",该镜像文件可以从谷歌官网得到 http://code.google ...
- Android控件常见属性
1.宽/高android:layout_width android:layout_height// 取值match_parent //匹配父控件wrap_content //自适应,根据内容 如果指定 ...
- Nginx实现虚拟主机
因为IP地址有限,因此经常存在多个主机域名对应着同一个IP地址的情况,可以通过配置虚拟主机来解决这个问题. 在nginx.conf中,每个server块就是一个虚拟主机,它只会处理与其server_n ...
- Android API Guides---RenderScript
RenderScript RenderScript是在Android上的高性能执行计算密集型任务的框架. RenderScript主要面向与数据并行计算的使用.尽管串行计算密集型工作负载能够受益.该R ...
- 网络配置ipconfig /release、ipconfig /renew
换了一个工位,换了一根网线,网络就不能用了,网线插在别人电脑上能用,我很是纳闷,这是哪里出问题了呢?通过进入CMD命令操作框,输入以下命令,重新分配IP成功解决问题,耶 ping: ping 的作用是 ...
- WDCP管理面板忘记ROOT MYSQL密码及重置WDCP后台登录密码方法
不管出于何种原因,应该有不少的朋友在自己的VPS/服务器上采用WDCP管理面板的时候有忘记MYSQL ROOT账户管理密码在寻找解决方法,甚至有忘记WDCP后台管理登录密码的.这些问题都比较简单,只需 ...
- c++打印蛇形矩阵
一个m*n的矩阵里按照下图形式填充,最后形成的矩阵即为蛇形矩阵,下图是m=4, n =5时的蛇形矩阵: 方法一:逐层循环 #include <iostream> using namespa ...
- Nginx之红黑树
/* * Copyright (C) Igor Sysoev * Copyright (C) Nginx, Inc. */ #ifndef _NGX_RBTREE_H_INCLUDED_ #de ...