Redis介绍

redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(列表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。

1. 使用Redis有哪些好处?

(1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)

(2) 支持丰富数据类型,支持string,list,set,sorted set,hash

(3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行

(4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除

2. redis相比memcached有哪些优势?

(1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型

(2) redis的速度比memcached快很多

(3) redis可以持久化其数据

3. redis常见性能问题和解决方案:

(1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件

(2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次

(3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内

(4) 尽量避免在压力很大的主库上增加从库

(5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...

这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。

4. MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据

 相关知识:redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略:

voltile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰

volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰

volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰

allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰

allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰

no-enviction(驱逐):禁止驱逐数据

5. Memcache与Redis的区别都有哪些?

1)、存储方式

Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。

Redis有部份存在硬盘上,这样能保证数据的持久性。

2)、数据支持类型

Memcache对数据类型支持相对简单。

Redis有复杂的数据类型。

3),value大小

redis最大可以达到1GB,而memcache只有1MB

6. Redis 常见的性能问题都有哪些?如何解决?

1).Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。

2).Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。

3).Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。

4). Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内

7, redis 最适合的场景

Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用Memcached,何时使用Redis呢?

       如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:
、Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
、Redis支持数据的备份,即master-slave模式的数据备份。
、Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。 (1)、会话缓存(Session Cache) 最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗? 幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。 (2)、全页缓存(FPC) 除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。 再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。 此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。 (3)、队列 Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。 如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。例如,Celery有一个后台就是使用Redis作为broker,你可以从这里去查看。 (4),排行榜/计数器 Redis在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“user_scores”,我们只需要像下面一样执行即可: 当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行: ZRANGE user_scores 0 10 WITHSCORES Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在这里看到。 (5)、发布/订阅 最后(但肯定不是最不重要的)是Redis的发布/订阅功能。发布/订阅的使用场景确实非常多。我已看见人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用Redis的发布/订阅功能来建立聊天系统!(不,这是真的,你可以去核实)。 Redis提供的所有特性中,我感觉这个是喜欢的人最少的一个,虽然它为用户提供如果此多功能。

Redis的优势及比较

redis是一个软件,帮助开发者对一台机器的内存进行操作
mysql是一个软件,帮助开发者对一台机器的硬盘进行操作
redis默认端口是:6379
mysql默认端口是:3306
关键字:
缓存,优先去redis中获取,如果没有就去数据库。

Redis安装和基本使用

方式一:

-redis 软件
-yum install redis
redis-server /etc/redis.conf 配置文件:
bind 0.0.0.0
port 6379
requirepass fdfafa
  
pip install redis
python连接redis的模块

连接池

redis-py使用connection pool来管理对一个redis server的所有连接,避免每次建立、释放连接的开销。默认,每个Redis实例都会维护一个自己的连接池。可以直接建立一个连接池,然后作为参数Redis,这样就可以实现多个Redis实例共享一个连接池。

redis_poll.py里:

import redis
POLL = redis.ConnectionPool(host='127.0.0.1',port=6379,password='luffy1234',max_connections=1000)

在别的py文件

# 连接池
# max_connections最多创建1000个连接
#max_connections 设置多少就多少个连接
from redis_study import redis_poll
conn = redis.Redis(connection_pool=redis_poll.POLL)

字典

Hash操作,redis中Hash在内存中的存储格式如下图:

hset 设置单个值

hset(name, key, value)
conn.hset('k4','username','alex') # name对应的hash中设置一个键值对(不存在,则创建;否则,修改) # 参数:
# name,redis的name
# key,name对应的hash中的key
# value,name对应的hash中的value # 注:
# hsetnx(name, key, value),当name对应的hash中不存在当前key时则创建(相当于添加)

hmset 批量设置值

# 在name对应的hash中批量设置键值对

# 参数:
# name,redis的name
# mapping,字典,如:{'k1':'v1', 'k2': 'v2'} # 如:
# r.hmset('xx', {'k1':'v1', 'k2': 'v2'})

hget 获取单个值

hget(name,key)
val = conn.hget('k4','username')
# 在name对应的hash中获取根据key获取value

hmget 获取多个值

# 在name对应的hash中获取多个key的值

# 参数:
# name,reids对应的name
# keys,要获取key集合,如:['k1', 'k2', 'k3']
# *args,要获取的key,如:k1,k2,k3 # 如:
# r.mget('xx', ['k1', 'k2'])
# 或
# print r.hmget('xx', 'k1', 'k2')

hgetall 获取name对应的all

#获取name对应hash的所有键值

'''
k4:{
username:alex,
age:18
} '''
val=conn.hgetall('k4') #结果
{
username:alex,
age:18
}

hlen 获取个数

hlen(name)
# 获取name对应的hash中键值对的个数

hkeys 获取key值

hkeys(name)
# 获取name对应的hash中所有的key的值

hvals 获取values值

hvals(name)
# 获取name对应的hash中所有的value的值

hexists 判断是否有key值

hexists(name, key)
# 检查name对应的hash是否存在当前传入的key

hdel 删除key

hdel(name,*keys)
# 将name对应的hash中指定key的键值对删除

hincrby 自增值

hincrby(name, key, amount=1)
# 自增name对应的hash中的指定key的值,不存在则创建key=amount
# 参数:
# name,redis中的name
# key, hash对应的key
# amount,自增数(整数)

hincrbyfloat 自增值浮点型

hincrbyfloat(name, key, amount=1.0)
# 自增name对应的hash中的指定key的值,不存在则创建key=amount # 参数:
# name,redis中的name
# key, hash对应的key
# amount,自增数(浮点数) # 自增name对应的hash中的指定key的值,不存在则创建key=amount

hscan 增量式迭代获取

hscan(name, cursor=0, match=None, count=None)
# 增量式迭代获取,对于数据大的数据非常有用,hscan可以实现分片的获取数据,并非一次性将数据全部获取完,从而放置内存被撑爆 # 参数:
# name,redis的name
# cursor,游标(基于游标分批取获取数据)
# match,匹配指定key,默认None 表示所有的key
# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数 # 如:
# 第一次:cursor1, data1 = r.hscan('xx', cursor=0, match=None, count=None)
# 第二次:cursor2, data1 = r.hscan('xx', cursor=cursor1, match=None, count=None)
# ...
# 直到返回值cursor的值为0时,表示数据已经通过分片获取完毕

hscan_iter 实现分批去redis中获取数据

hscan_iter(name, match=None, count=None)
# 利用yield封装hscan创建生成器,实现分批去redis中获取数据 # 参数:
# match,匹配指定key,默认None 表示所有的key
# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数 # 如:
# for item in r.hscan_iter('xx'):
# print item

参考http://www.cnblogs.com/wupeiqi/articles/5132791.html

Redis1 介绍和字典的更多相关文章

  1. 窥探Swift之数组与字典

    说到数组和字典,只要是编过程的小伙伴并不陌生.在Swift中的数组与字典也有着一些让人眼前一亮的特性,今天的博客就来窥探一下Swift中的Array和Dictionary.还是沿袭之前的风格,在介绍S ...

  2. iOS 字典与JSON相互转换

    iOS 字典与JSON相互转换 首先简单说一下为什么会写这种幼稚的文章. 现在的网络请求几乎都是AFN完成的,AFN也为我们写了了JSON转换字典的方法,但是不要忘记后台是一个很爱用JSON的人群,H ...

  3. python基础知识3——基本的数据类型2——列表,元组,字典,集合

    磨人的小妖精们啊!终于可以归置下自己的大脑啦,在这里我要把--整型,长整型,浮点型,字符串,列表,元组,字典,集合,这几个知识点特别多的东西,统一的捯饬捯饬,不然一直脑袋里面乱乱的. 一.列表 1.列 ...

  4. Cocos2d-x中__Dictionary容器以及实例介绍

    __Dictionary类在Cocos2d-x 2.x时代它就是CCDictionary类,它是模仿Objective-C中的NSDictionary类而设计的,通过引用计数管理内存.__Dictio ...

  5. 第1章 Python介绍

    本章将包含Python的介绍,安装以及Python的数据类型及运算符.其中关于数据类型中的字符串.列表.元组和字典后续章节会着重介绍. 1.1 为什么学Python Python是一门简明并强大的面向 ...

  6. 字典:当索引不好用时2 - 零基础入门学习Python026

    字典:当索引不好用时2 让编程改变世界 Change the world by program 上节课我们学习到在一些情况下,比序列更实用的映射类型:字典.我们知道字典也有个关键符号就是大括号(也叫花 ...

  7. 【WiFi密码破解详细图文教程】ZOL仅此一份 详细介绍从CDlinux U盘启动到设置扫描破解-破解软件论坛-ZOL中关村在线

    body { font-family: Microsoft YaHei UI,"Microsoft YaHei", Georgia,Helvetica,Arial,sans-ser ...

  8. 【算法】字典的诞生:有序数组 PK 无序链表

    参考资料 <算法(java)>                           — — Robert Sedgewick, Kevin Wayne <数据结构>       ...

  9. 自学Python2.4-基本数据类型-字典dict(objct)

    Python dict方法总结 一.字典介绍 1.字典概述 ①字典是python中唯一内建的映射类型.又称关联数组或散列②映射类型对象里哈希值(键,key)和指向的对象(值,value)是一对多的的关 ...

随机推荐

  1. 【共享单车】—— React后台管理系统开发手记:AntD Table基础表格

    前言:以下内容基于React全家桶+AntD实战课程的学习实践过程记录.最终成果github地址:https://github.com/66Web/react-antd-manager,欢迎star. ...

  2. MySQL时间增加、字符串拼接

    MySQL时间增加.字符串拼接 SELECT DATE_ADD(startTime,  INTERVAL 10 SECOND); CONCAT(string1,string2,…)

  3. /profile文件修改后立即生效

    修改profile etc/profile文件是只读的,直接用vi或gedit打开修改后是无法保存的.要修改profile,需要取得root权限,(使用gedit编辑) $sudo gedit /et ...

  4. 编译和安装在Windows上橡胶树 (Compiling and Installing Yate on Windows)

    编译和安装在Windows上橡胶树     有两种方法来安装橡胶树下窗口: 下载并安装橡胶树 下载后页面设置. 另一个选择是下载橡胶树从SVN并编译它. 内容 ( 隐藏] 1 安装使用设置橡胶树 2  ...

  5. SVN 权限配置详解

    SVN权限详细配置 本章将详细介绍SVN权限配置涉及的两个配置文件, svnserve.conf 和 authz.conf,通过对配置逐行的描述,来阐明其中的一些细节含义.除此之外的其他配置.安装等内 ...

  6. STL源代码剖析 容器 stl_list.h

    本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie list ----------------------------------------- ...

  7. sed `grep` 查找并替换

    sed "s/libletvwatermark/libletv_watermark/" `grep -rl libletvwatermark` grep [options] 3.主 ...

  8. webserver【实时查询当天的天气情况】

    1.webserver是什么? 日常生活中经常会使用到webserver,注册时,会收到验证码,购买东西时,会收到短信,假如,A公司网站和B公司合作,那么A公司注册对的用户可以直接推送给B网站,那怎么 ...

  9. ArcObject IFeature set_Shape()和Delete()报错

    这样的问题主要是Ifeature实际在数据库里面不存在!可是通过IFeatureClass.getFeature()又可以得到! 详细操作流程: 首先是对要素进行删除,可是通过IFeatureClas ...

  10. TCP是如何保证包的顺序传输

    转自:http://blog.csdn.net/ggxxkkll/article/details/7894112 大家都知道,TCP提供了最可靠的数据传输,它给发送的每个数据包做顺序化(这看起来非常烦 ...