[国家集训队]礼物(扩展Lucas定理)

传送门可以直接戳标题

172.40.23.20 24 .1

答案就是一个式子:

\[{n\choose \Sigma_{i=1}^m w}\times\prod_{i=1}^m {\Sigma_{j=1}^m w_j-\Sigma_{j=1}^{j< i}w_j\choose w_i}
\]

解释一下这个式子怎么来的...

  • 先从所有的礼物里面选出\(\Sigma w\)出来
  • 每个人依次选,选择的方案就是从剩下的礼物中挑出\(w_i\)个

直接扩展Lucas...

#include<bits/stdc++.h>
#define int long long
using namespace std;typedef long long ll;
template < class ccf >
inline ccf qr(ccf b){
register char c=getchar();register int q=1;register ccf x=0;
while(c<48||c>57)q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)x=x*10+c-48,c=getchar();
return q==-1?-x:x;}
inline int qr(){return qr(1);} const int maxn=51;
int n,mod,m;
int w[maxn]; namespace lcs{
inline ll poww(ll a,ll b,ll mod){
ll base=a,ans=1;
while(b){
if(b&1) ans=(1ll*ans*base)%mod;
base=(1ll*base*base)%mod;
b>>=1;
}
return 1ll*ans;
} inline void Exgcd(ll a,ll b,ll &x,ll &y){
if(!b){x=1,y=0;return ;}
Exgcd(b,a%b,y,x);y-=a/b*x;
} inline ll rev(ll k,ll p){
if(!k)return 0;
ll x=0,y=0,a=k,b=p;
Exgcd(a,b,x,y);
x=(x%b+b)%b;
if(!x)x+=b;
return 1ll*x;
}
inline ll mul(ll n,ll p,ll pk){
if(!n)return 1;
ll ans=1;
for(ll i=2;i<=pk;i++)
if(i%p)ans=ans*i%pk;
ans=poww(ans,n/pk,pk);
for(ll i=2;i<=n%pk;i++)
if(i%p)ans=ans*i%pk;
return 1ll*ans*mul(n/p,p,pk)%pk;
} inline ll C(ll n,ll m,ll mod,ll p,ll pk){
if(m>n)return 0;
ll a=mul(n,p,pk),b=mul(m,p,pk),c=mul(n-m,p,pk),k=0; for(ll i=n;i;i/=p)k+=i/p;
for(ll i=m;i;i/=p)k-=i/p;
for(ll i=n-m;i;i/=p)k-=i/p; ll ans=1ll*a*rev(b,pk)%pk*rev(c,pk)%pk*poww(p,k,pk)%pk; return 1ll*ans*(mod/pk)%mod*rev(mod/pk,pk)%mod;
}
inline ll exlucas(int n,int m){
int mod=::mod;
int ret=0;
for(register int t=2;t*t<=mod;++t)
if(mod%t==0){
register int temp=1;
while(mod%t==0) temp*=t,mod/=t;
ret=(ret+C(n,m,::mod,t,temp))%(::mod);
}
if(mod>1) ret=(ret+C(n,m,::mod,mod,mod))%(::mod);
return ret;
} } using lcs::exlucas;
#undef int
int main(){
#define int long long
// freopen("gift.in","r",stdin);
// freopen("gift.out","w",stdout);
mod=qr();
n=qr();m=qr();
for(register int t=1;t<=m;++t)
w[t]=qr(),w[0]+=w[t];
if(w[0]>n) return puts("Impossible"),0;
ll ans=exlucas(n,w[0]);
for(register int t=1;t<=m;++t)
ans=ans*exlucas(w[0],w[t])%mod,w[0]-=w[t];
printf("%lld\n",(ll)ans);
return 0;
}

【题解】国家集训队礼物(Lucas定理)的更多相关文章

  1. 【LG2183】[国家集训队]礼物

    [LG2183][国家集训队]礼物 题面 洛谷 题解 插曲:不知道为什么,一看到这个题目,我就想到了这个人... 如果不是有\(exLucas\),这题就是\(sb\)题... 首先,若\(\sum_ ...

  2. 题解-[国家集训队]Crash的数字表格 / JZPTAB

    题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...

  3. BZOJ 2142: 礼物 [Lucas定理]

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1294  Solved: 534[Submit][Status][Discuss] ...

  4. luogu P2183 [国家集训队]礼物

    LINK:礼物 n个物品 m个人 每个人要分得wi 个物品 每个物品互异 分给每个人的物品不分顺序 求方案数. \(n,p\leq 1e9 m\leq 5\) 方案数 那显然是 第一个人拿了w1件物品 ...

  5. 洛谷 P2183 [国家集训队]礼物

    题目描述 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物 ...

  6. Luogu P2183 [国家集训队]礼物 扩展卢卡斯+组合数

    好吧学长说是板子...学了之后才发现就是板子qwq 题意:求$ C_n^{w_1}*C_{n-w_1}^{w_2}*C_{n-w_1-w_2}^{w_3}*...\space mod \space P ...

  7. P2183 [国家集训队]【一本通提高组合数学】礼物

    [国家集训队]礼物 题目背景 一年一度的圣诞节快要来到了.每年的圣诞节小 E 都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小 E 心目中的重要性不同,在小 E 心中分量越重的人,收到的礼物会 ...

  8. [学习笔记]扩展LUCAS定理

    可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...

  9. Lucas定理和扩展Lucas定理

    1.Lucas定理 首先给出式子:\(C_n^m\%p = C_{\lfloor\frac{n}{p}\rfloor}^{\lfloor\frac{m}{p}\rfloor} * C_{n\%p}^{ ...

随机推荐

  1. 倍福TwinCAT(贝福Beckhoff)基础教程6.1 TwinCAT如何与高级语言通讯

    因为使用TwinCAT的人用途不同,重视点就不同.如果用来代替传统PLC+HMI做项目的,很少会需要用到跟高级语言通讯,但是如果是用来做运动控制平台如做机器人运动控制器的,就肯定会用到.不管是否用得上 ...

  2. C1:工厂模式 Factory

    最常用的实例化对象模式,用工厂方法替代了实例化对象. 应用场景:A.一个类的子类经常面临着剧烈变化,但却拥有较稳定的接口,或者说拥有相同的接口.工厂方法定义一个用于创建对象的接口,让子类来决定创建那个 ...

  3. react-native 项目实战 -- 新闻客户端(5) -- 完善首页列表数据

    1.Home.js: /** * 首页 */ import React, { Component } from 'react'; import { AppRegistry, StyleSheet, T ...

  4. TCP/IP详解 卷一(第十一章 UDP:用户数据报协议)

    UDP是一个简单的面向数据报的运输层协议. UDP不提供可靠性:它把应用程序传给IP层的数据发送出去,但是并不保证它们能到达目的地. UDP首部的个字段如下图所示

  5. mongo 增

    mongodb存储的是文档,文档是json格式的对象,我们的增删改查,都要传输json对象 json是一个对象,js里有数组这个概念,只需要把多个对象放到一个数组里,即可 use test //首先选 ...

  6. 如何在aspx页面中使用ascx控件(用户自定义的一个控件)?

    aspx是页面文件ascx是用户控件,用户控件必须嵌入到aspx中才能使用. ascx是用户控件,相当于模板 其实ascx你可以理解为Html里的一部分代码,只是嵌到aspx里而已,因为aspx内容多 ...

  7. BIOS截图中文

  8. 运用Arc Hydro提取河网

    Arc hydro 插件需要 spatial analyst 支持: 解决方法:Tools菜单>>Extensions...,勾选Spatial Analyst 1.设置存储路径 ApUt ...

  9. hdu 3172 Virtual Friends(并查集,字典树)

    题意:人与人交友构成关系网,两个人交友,相当于两个朋友圈的合并,问每个出两人,他们目前所在的关系网中的人数. 分析:用并查集,其实就是求每个集合当前的人数.对于人名的处理用到了字典树. 注意:1.题目 ...

  10. python 的三元表达式

    python中的三目运算符不像其他语言 其他的一般都是 判定条件?为真时的结果:为假时的结果 如 result=5>3?1:0 这个输出1,但没有什么意义,仅仅是一个例子. 而在python中的 ...