题目大意:

平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000

题解

我们看到了n的范围,于是我们就知道这一定不是一个线性算法

所以我们尝试枚举三角形的一个点,那么我们现在要对每一个点i,求

\(\sum_{j,k \neq i}(\overrightarrow{p_ip_j})*(\overrightarrow{p_ip_k})\)

其中*表示叉积

然后我们发现这是一个对二元对的某种操作求和的一种

我们可以想到将其转化为

\[\sum_{j,k \neq i}abs((\overrightarrow{p_ip_j})*\sum(\overrightarrow{p_ip_k}))
\]

我们拆开叉积的表达式即\(x_1*y_2 - y_1*x_2\)我们发现是可以这么拆的

但是我们每次累加的时候实际上是取abs的,所以实际上并不能这么加

所以我们尝试拆开abs

我们发现只要我们用一个恰当的顺序枚举j,k就可以不用取abs即可

所以可以做到\(O(n^2logn)\)瓶颈在于极角排序

#include <cstdio>
#include <iomanip>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
template<typename T>inline void read(T &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline int cat_max(const int &a,const int &b){return a>b ? a:b;}
inline int cat_min(const int &a,const int &b){return a<b ? a:b;}
const int maxn = 3010;
const double eps = 1e-9;
struct Point{
ll x,y;
double k;
Point(const ll &a=0,const ll &b=0){x=a;y=b;}
};
inline bool cmp1(const Point &a,const Point &b){
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
inline bool cmp2(const Point &a,const Point &b){
return a.k < b.k;
}
typedef Point Vector;
inline Vector operator + (const Vector &a,const Vector &b){
return Vector(a.x + b.x,a.y + b.y);
}
inline Vector operator - (const Vector &a,const Vector &b){
return Vector(a.x - b.x,a.y - b.y);
}
inline ll cross(const Vector &a,const Vector &b){
return a.x*b.y - a.y*b.x;
}
Point s[maxn],p[maxn];
int cnt = 0;
int main(){
int n;read(n);
for(int i=1;i<=n;++i){
read(p[i].x);read(p[i].y);
}sort(p+1,p+n+1,cmp1);
ll ans = 0;
for(int i=1;i<=n;++i){
cnt = 0;
for(int j=i+1;j<=n;++j){
s[++cnt] = p[j] - p[i];
if(p[j].x == p[i].x) s[cnt].k = 1e10;
else s[cnt].k = (double)(p[i].y - p[j].y)/(double)(p[i].x - p[j].x);
}sort(s+1,s+cnt+1,cmp2);
Point sum;
for(int j=cnt;j>=1;--j){
ans += cross(s[j],sum);
sum = sum + s[j];
}
}printf("%lld.",ans>>1);
if(ans & 1) puts("5");
else puts("0");
getchar();getchar();
return 0;
}

并且在做题的时候发现了一些有趣的事情

long long x = 100000000000000;
printf("%d\n",((long long)((double)x)) == x);

会输出0哈哈哈哈哈哈哈哈哈哈哈哈

为了这个lz拍了30mins的标程。。。

bzoj 1132: [POI2008]Tro 计算几何的更多相关文章

  1. bzoj 1132 [POI2008]Tro 几何

    [POI2008]Tro Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1796  Solved: 604[Submit][Status][Discu ...

  2. BZOJ.1132.[POI2008]Tro(极角排序)

    BZOJ 洛谷 考虑暴力,每次枚举三个点,答案就是\(\frac12\sum_{k<j<i}(i-k)\times(j-k)\). 注意到叉积有分配率,所以固定\(k\),枚举\(i,j\ ...

  3. BZOJ 1132 [POI2008]Tro(极角排序)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1132 [题目大意] 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和(N&l ...

  4. bzoj 1132 POI2008 Tro

    大水题=_=,可我想复杂了…… 很裸的暴力,就是加了个小优化…… 叉积求面积 :abs(xi*yj - yi*xj) 所以去掉绝对值,把 xi 和 xj 提出来就可以求和了 去绝对值加个极角排序,每次 ...

  5. 【刷题】BZOJ 1132 [POI2008]Tro

    Description 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 Input 第一行给出数字N,N在[3,3000] 下面N行给出N个点的坐标,其值在[0,10 ...

  6. bzoj1132[POI2008]Tro 计算几何

    1132: [POI2008]Tro Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1722  Solved: 575[Submit][Status] ...

  7. 【BZOJ】1132: [POI2008]Tro

    题意 给\(n(1 \le n \le 3000)\)个点,求所有三角形的面积和. 分析 首先枚举一个点,发现把其它点按照关于这个点的极角排序后第\(i\)个点关于前面\(1\)到\(i-1\)的点组 ...

  8. 【bzoj1132】[POI2008]Tro 计算几何

    题目描述 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 输入 第一行给出数字N,N在[3,3000] 下面N行给出N个点的坐标,其值在[0,10000] 输出 保留 ...

  9. BZOJ1132: [POI2008]Tro

    1132: [POI2008]Tro Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 815  Solved: 211[Submit][Status] ...

随机推荐

  1. SQLServer2008 统计表占用空间

    1.查看一张表占用的空间大小 EXEC sp_spaceused '表' 1.查看一个数据库中所有表占用空间大小 EXEC sp_MSforeachtable 'sp_spaceused " ...

  2. JS获取图片的缩略图,并且动态的加载多张图片

    找了好多资料也没有找到该死的ie的解决办法,最后放弃了ie <!DOCTYPE html> <html> <head> <meta charset=" ...

  3. WinForm开发----关闭window窗体最好的办法

    最近有一人问道,如何切换窗体.一想到这,我就想,不就是new一个form,然后就show么? 可是我发现,当你控制某个属性的时候,不是不能控制,只是很麻烦而已.有没有好的办法?当然有,咋办? 最简单最 ...

  4. Zookeeper数据与存储

    一.前言 前面分析了Zookeeper对请求的处理,本篇博文接着分析Zookeeper中如何对底层数据进行存储,数据存储被分为内存数据存储于磁盘数据存储. 二.数据与存储 2.1 内存数据 Zooke ...

  5. [DBNETLIB][ConnectionOpen(Connect()).]SQL Server 不存在或拒绝访问 数据库错误 解决办法总结

    连接数据库报错:“数据库异常:[DBNETLIB] [ConnectionOpen(Connenct()).] Sqlserver 不存在或拒绝访问” 原因: 1.查看是不是没有在数据库中添加数据库服 ...

  6. pom.xml配置文件详解(转发)

    setting.xml主要用于配置maven的运行环境等一系列通用的属性,是全局级别的配置文件:而pom.xml主要描述了项目的maven坐标,依赖关系,开发者需要遵循的规则,缺陷管理系统,组织和li ...

  7. 关于ionic开发中遇到的坑与总结

    这次是第二次使用ionic开发混合app,今天算是对这个框架做一个总结,基础的我就不再重复了,网上都有教程.我就说说自己的心得和遇见的各种坑, 之后会陆续补充,想到什么说什么吧. 1.关于ionic效 ...

  8. mysql索引学习----2----创建索引、修改索引、删除索引的命令语句

    查看表中已经存在 index:show index from table_name; 创建和删除索引索引的创建可以在CREATE TABLE语句中进行,也可以单独用CREATE INDEX或ALTER ...

  9. php中生成随机密码的自定义函数代码

    这篇文章主要分享下php中生成随机密码的方法,原理就是把一些要生成的字符预置一个的字符串包括数字拼音之类的以及一些特殊字符,这样我们再随机取字符组成我们想要的随机密码了 代码一: 生成一个随机密码的函 ...

  10. client = new DatagramSocket(LocalPort) 是说端口已经被占用的意思

    ok 现在遇到一个问题,client = new DatagramSocket(LocalPort) 是说端口已经被占用的意思 ref:!!https://community.oracle.com/t ...