\(\color{#0066ff}{ 题目描述 }\)

你的任务是制定出一个产品的分配方案,使得订单条件被满足,并且所有员工的愤怒值之和最小。由于我们并不想使用Special Judge,也为了使选手有更多的时间研究其他两道题目,你只需要输出最小的愤怒值之和就可以了。

\(\color{#0066ff}{输入格式}\)

\(\color{#0066ff}{输出格式}\)

仅输出一个整数,表示最小的愤怒值之和。

\(\color{#0066ff}{输入样例}\)

2 3
2 2 2
1 1 0
0 0 1
1
2
1 10
1
2
1 6

\(\color{#0066ff}{输出样例}\)

24

\(\color{#0066ff}{数据范围与提示}\)

\(\color{#0066ff}{ 题解 }\)

显然是个费用流

考虑怎么建边

愤怒值对于每个员工完成工作的数量来分段

完成工作数量? 这不就是从员工流出去多少流吗

所以,从S向员工,连多条边,每条边的容量为每段的长

这样愤怒值的问题就解决了

注意,每个任务不止完成一次

所以员工向任务连容量为inf的边,任务向T连容量为需要次数的边

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 1e5;
const LL inf = 999999999999999LL;
struct node {
int to;
LL dis, can;
node *nxt, *rev;
node(int to = 0, LL dis = 0, LL can = 0, node *nxt = NULL)
: to(to), dis(dis), can(can), nxt(nxt) {}
void *operator new (size_t) {
static node *S = NULL, *T = NULL;
return (S == T) && (T = (S = new node[1024]) + 1024), S++;
}
};
LL dis[maxn], change[maxn];
node *head[maxn], *road[maxn];
bool vis[maxn];
bool f[505][505];
int n, s, t, m;
std::vector<LL> v[maxn], d[maxn];
bool spfa() {
for(int i = s; i <= t; i++) dis[i] = inf, change[i] = inf;
std::queue<int> q;
dis[s] = 0;
q.push(s);
while(!q.empty()) {
int tp = q.front(); q.pop();
vis[tp] = false;
for(node *i = head[tp]; i; i = i->nxt)
if(dis[i->to] > dis[tp] + i->dis && i->can) {
dis[i->to] = dis[tp] + i->dis;
change[i->to] = std::min(change[tp], i->can);
road[i->to] = i;
if(!vis[i->to]) vis[i->to] = true, q.push(i->to);
}
}
return change[t] != inf;
} LL mcmf() {
LL cost = 0;
while(spfa()) {
cost += change[t] * dis[t];
for(int o = t; o != s; o = road[o]->rev->to) {
road[o]->can -= change[t];
road[o]->rev->can += change[t];
}
}
return cost;
}
void add(int from, int to, LL dis, LL can) {
head[from] = new node(to, dis, can, head[from]);
}
void link(int from, int to, LL dis, LL can) {
add(from, to, dis, can);
add(to, from, -dis, 0);
head[from]->rev = head[to];
head[to]->rev = head[from];
}
int main() {
m = in(), n = in();
t = m + n + 1, s = 0;
for(int i = m + 1; i <= m + n; i++) link(i, t, 0, in());
for(int i = 1; i <= m; i++)
for(int j = 1; j <= n; j++)
if(in()) link(i, m + j, 0, inf);
for(int i = 1; i <= m; i++) {
int k = in();
v[i].push_back(0);
for(int j = 1; j <= k; j++) v[i].push_back(in());
v[i].push_back(inf);
for(int j = 1; j <= k + 1; j++) d[i].push_back(in());
for(int j = 0; j <= k; j++) link(s, i, d[i][j], v[i][j + 1] - v[i][j]);
}
printf("%lld", mcmf());
return 0;
}

P2488 [SDOI2011]工作安排 费用流的更多相关文章

  1. BZOJ 2245: [SDOI2011]工作安排( 费用流 )

    费用流模板题..限制一下不同愤怒值的工作数就可以了. ------------------------------------------------------------------------- ...

  2. 【bzoj2245】[SDOI2011]工作安排 费用流

    题目描述 你的公司接到了一批订单.订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件.公司共有m名员工,员工被编号为1~m员工能够制造的产品种类有所区别.一件产品必须完整地由 ...

  3. [bzoj2245][SDOI2011]工作安排——费用流

    题目大意: 传送门 题解: 很容易建模,把每一个工作人员拆成两个点,由第一个点向第二个点连S+1条边即可. 这水题没什么难度,主要是longlong卡的丧心病狂... 代码 #include < ...

  4. BZOJ 2245 SDOI 2011 工作安排 费用流

    题目大意:有一些商品须要被制造.有一些员工.每个员工会做一些物品,然而这些员工做物品越多,他们的愤慨值越大,这满足一个分段函数.给出哪些员工能够做哪些东西,给出这些分段函数,求最小的愤慨值以满足须要被 ...

  5. bzoj 2245 [SDOI2011]工作安排(最小费用最大流)

    2245: [SDOI2011]工作安排 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1197  Solved: 580[Submit][Statu ...

  6. 【BZOJ2245】[SDOI2011]工作安排(费用流)

    [BZOJ2245][SDOI2011]工作安排(费用流) 题面 BZOJ 洛谷 题解 裸的费用流吧. 不需要拆点,只需要连边就好了,保证了\(W_j<W_{j+1}\). #include&l ...

  7. 【BZOJ2245】[SDOI2011]工作安排 拆边费用流

    [BZOJ2245][SDOI2011]工作安排 Description 你的公司接到了一批订单.订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件.公司共有m名员工,员工被 ...

  8. [bzoj2245][SDOI2011]工作安排(费用流)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2245 分析: 要注意到题目下面说的w是单增的 明显的费用流: 弄个源点S,汇点T S连 ...

  9. [SDOI2011][bzoj2245] 工作分配 [费用流]

    题面 传送门 思路 数据范围n,m<=250 分配任务问题 这是典型的"看到数据范围就知道算法"类型 而且我们发现我们要保证一定产出的情况下最小化花费 这句话等价于保证一定流 ...

随机推荐

  1. Mysql Hive 通用的行列转换

    就是简单的一个字符串拼接,意义和所用场景自己体会下 insert into table agent_library1 select concat_ws(':',collect_set(name)) a ...

  2. OpenCV 官方工程报错(1) Couldn't load mixed_sample from loader

    openCV/OpenCV-android-sdk/samples/tutorial-2-mixedprocessing 工程 - ::): Trying to get library list - ...

  3. 每天一道算法题(24)——自定义幂函数pow

    double myPower(double base, int exponent){ if(exponent==0) return 1; if(exponent==1) return base; if ...

  4. js语法和数据类型

    基础知识(Basics) JavaScript 的很多语法借鉴自 Java,但也受 Awk,Perl 和 Python 影响. JavaScript 是大小写敏感的,使用 Unicode 字符集. 在 ...

  5. HDU 6396(2018多校第七场1011) Swordsman

    场上场下各种TLE到怀疑人生...经过大佬指点之后才知道要用fread才能过,一般的快读不行... 题意:一个剑客打小怪兽,有n头小怪兽,剑客和小怪兽有m个属性.只有剑客的m个属性都大于等于某个小怪兽 ...

  6. Ros学习——导航

    1.导航框架 在总体框架图中可以看到,move_base提供了ROS导航的配置.运行.交互接口,它主要包括两个部分:      (1) 全局路径规划(global planner):根据给定的目标位置 ...

  7. bluebird的安装配置

    安装 下载bluebird 3.5.0(开发) 意味着在开发中使用的未分类源文件.警告和长堆栈跟踪被启用,这会影响性能. <script src="//cdn.jsdelivr.net ...

  8. C++对二进制文件的操作实例

    有5个学生的数据,要求: (1)将它们存放到磁盘文件中: (2)将磁盘文件中的第1,3,5个学生数据读入程序,并显示出来: (3)将第三个学生的数据修改后存回磁盘文件中的原有位置: (4)从磁盘文件读 ...

  9. Python_pip_02_利用pip安装模块(以安装pyperclip为例)

    >任务:利用pip安装pyperclip模块 >前提 你已经在你的电脑里面安装啦Python2.7的Windows版本,并且已经配置了环境变量 >实现步骤 >>打开你的P ...

  10. 基于R语言的RRT算法效率统计