洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)
我可能根本就没有学过斜率优化……
我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯木厂建在$i$的最小花费
那么状态转移方程就是$$dp[i]=min\{tot-dis[j]*sum[j]-dis[i]*(sum[j]-sum[i])\}$$
然后考虑斜率优化,设$j$比$k$更优,则(一堆乱七八糟的推导之后)有$$\frac{sum[j]*dis[j]-sum[k]-dis[k]}{sum[j]-sum[k]}>dis[i]$$
那么只要考虑维护一个上凸包就可以了
//minamoto
#include<iostream>
#include<cstdio>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
int sum[N],dis[N],w[N],q[N],dp[N],n,h,t,tot,ans=0x3f3f3f3f;
inline double slope(int j,int k){
return ((sum[j]*dis[j])-(sum[k]*dis[k]))*1.0/(sum[j]-sum[k]);
}
inline int calc(int i,int j){
return tot-sum[j]*dis[j]-dis[i]*(sum[i]-sum[j]);
}
int main(){
//freopen("testdata.in","r",stdin);
n=read();
for(int i=;i<=n;++i) w[i]=read(),dis[i]=read();
for(int i=n;i;--i) dis[i]+=dis[i+];
for(int i=;i<=n;++i) sum[i]=sum[i-]+w[i],tot+=w[i]*dis[i];
for(int i=;i<=n;++i){
while(h<t&&slope(q[h],q[h+])>dis[i]) ++h;
cmin(ans,calc(i,q[h]));
while(h<t&&slope(q[t],q[t-])<slope(q[t-],i)) --t;q[++t]=i;
}
printf("%d\n",ans);
return ;
}
洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)的更多相关文章
- 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)
传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...
- 洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)
题意 题目链接 Sol 枚举第二个球放的位置,用前缀和推一波之后发现可以斜率优化 // luogu-judger-enable-o2 #include<bits/stdc++.h> #de ...
- 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)
qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...
- [CEOI2004]锯木厂选址 斜率优化DP
斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...
- P4360 [CEOI2004]锯木厂选址
P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...
- luogu P4360 [CEOI2004]锯木厂选址
斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...
- luoguP4360 [CEOI2004]锯木厂选址
题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...
- 动态规划(斜率优化):[CEOI2004]锯木厂选址
锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...
- [BZOJ2684][CEOI2004]锯木厂选址
BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...
随机推荐
- jenkins学习 02 jenkins安装与配置
1: Jenkins安装 在最简单的情况下,Jenkins 只需要两个步骤: (1)下载最新的版本(一个 WAR 文件).Jenkins官方网址: http://Jenkins-ci.org/ (2 ...
- struts1-mapping.getInputForward()与mapping.getInput
转自:https://www.cnblogs.com/azai/archive/2010/06/05/1752416.html 奇怪为什么登陆失败的时候 没有错误提示.这个问题困扰了N久 仔细看了下, ...
- 使用百度地图SDK 这是之前版本 现在的sdk v2-1-2使用方法完全改变
1.添加BMapApiDemoApp.java 2.AndroidManifest文件 application里添加 android:name=".ui.BMapApiDemoApp&q ...
- set源码之心得
C++的STL很强大,强大到我只愿慵懒地去使用而不知其所以然.直到李师问我,我的回答被李师否定,我方才意识到自己是多么地浅陋.希望自己有空抽时间把STL源码给研究一下,化为自己真正可以掌控的力量. s ...
- java格式化数字、货币、金钱
网上摘来的,以后可能会用到 java开发中经常会有数字.货币金钱等格式化需求,货币保留几位小数,货币前端需要加上货币符号等.可以用java.text.NumberFormat和java.text.De ...
- 按钮控件JButton的使用
---------------siwuxie095 工程名:TestUI 包名:com.siwuxie095.ui 类名:TestButton. ...
- docker学习(1)docker的安装
原文地址:http://blog.csdn.net/we_shell/article/details/38352837 1. 前言 Docker的英文本意是“搬运工”,在程序员的世界里,Docker搬 ...
- Mat表达式
利用C++中的运算符重载,Opencv2中引入了Mat运算表达式.这一新特点使得使用c++进行编程时,就如同写Matlab脚本. 例如: 如果矩阵A和B大小相同,则可以使用如下表达式: C=A+B+1 ...
- 炫酷实用的CSS3代码垂直手风琴菜单
今天在微博上看到别人分享的代码,自己拿来自己保存着. 代码效果如下: 下面是源码: index.html <!DOCTYPE html> <html > <head> ...
- 操作系统 Linux ex1 note
ctrl + alt + T 命令行 ctrl + alt + F7 ctrl + alt + F1-6 ls 列出所有文件 / 根目录 ~ /home/username cd 切换路径 . 当前目录 ...