一、什么是Sharding-JDBC

Sharding-JDBC定位为轻量级Java框架,在Java的JDBC层提供的额外服务。它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。

二、Sharding-JDBC能做什么

  • 分库 & 分表

  • 读写分离

  • 分布式主键

  • 分布式事务

三、适用项目框架

Sharding-JDBC适用于:

  • 任何基于Java的ORM框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template或直接使用JDBC。

  • 基于任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid, HikariCP等。

  • 支持任意实现JDBC规范的数据库,目前支持MySQL,Oracle,SQLServer和PostgreSQL。

四、Maven依赖

<!-- sharding jdbc 开始-->
<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-core</artifactId>
<version>${sharding.version}</version>
</dependency>
<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-jdbc-spring-namespace</artifactId>
<version>${sharding.version}</version>
</dependency>
<!—如果不配置分布式事务的话配置上边两个就够了 -->
<!--分布式事务引用依赖-->
<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-transaction-2pc-xa</artifactId>
<version>${sharding.version}</version> </dependency>
<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-transaction-spring</artifactId>
<version>${sharding.version}</version>
</dependency>
<!-- sharding jdbc 结束-->
<!--AspectJ AOP支持 -->
<dependency>
<groupId>org.aspectj</groupId>
<artifactId>aspectjweaver</artifactId>
<version>${aspectjweaver.version}</version>
</dependency>

五、读写分离

5.1 数据源配置

先配置数据源

也可以配置读写分离

以下配置是ds0ds1两个数据库的主和从一共四个数据源。

parentDs 是数据源公共的配置,抽出去以免写重复代码。

<!-- ds0的主-->
<bean id="ds0_master" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close" parent="parentDs">
<property name="driverClassName" value=""/>
<property name="url" value=""/>
</bean>
<!-- ds0的从-->
<bean id="ds0_slave" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close" parent="parentDs">
<property name="driverClassName" value=""/>
<property name="url" value="${sharding.connection.url.0}"/>
</bean>
<!-- ds1的主-->
<bean id="ds1_master" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close" parent="parentDs">
<property name="driverClassName" value=""/>
<property name="url" value="${sharding.connection.url.1}"/>
</bean>
<!-- ds1的从-->
<bean id="ds1_slave" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close" parent="parentDs">
<property name="driverClassName" value=""/>
<property name="url" value="${sharding.connection.url.1}"/>
</bean>

5.2 读写分离配置

只配置主从不配置分库分表的情况如下,如果要配置分库分表则不需要下面这个配置。

master-data-source-name 是主数据源ID

slave-data-source-names 是从数据源ID

<master-slave:data-source id="masterSlaveDataSource" master-data-source-name="ds0_master, ds1_master" slave-data-source-names="ds0_slave, ds1_slave " >
<master-slave:props>
<prop key="sql.show">${sql_show}</prop>
<prop key="executor.size"></prop>
<prop key="foo">bar</prop>
</master-slave:props>
</master-slave:data-source>

5.3 读写分离和分库分表一起配置

如果读写分离和分库分表一起使用的话把主从路由配置到 shardingdata-source下就可以了。

sharding:master-slave-rule 的 id 就是配置出来的逻辑的数据源的名称,如果多个从的话还可以通过配置strategy-ref来配置负载均衡。

master-data-source 配置的是主库数据源ID 。

slave-data-source 配置的是从库数据源ID,多个以逗号分开。

<!-- sharding数据源-->
<sharding:data-source id="shardingDataSource">
<!-- 读写分离的话要把所有的主从数据源都写在这里-->
<sharding:sharding-rule
data-source-names="ds0_master,ds0_slave,ds1_master,ds1_slave ">
<!-- 读写分离的路由 一主一从配置 strategy-ref -->
<sharding:master-slave-rules>
<sharding:master-slave-rule id="ds0" master-data-source-name="ds0_master" slave-data-source-names="ds0_slave"/>
<sharding:master-slave-rule id="ds1" master-data-source-name="ds1_master" slave-data-source-names="ds1_slave"/>
</sharding:master-slave-rules>
<!-- 读写分离配置 结束--> <sharding:table-rules>
<!— 这里是分库分表路由的配置 -->
</sharding:table-rules>
<sharding:binding-table-rules>
<!—- 绑定表的配置 -->
</sharding:binding-table-rules>
</sharding:sharding-rule>
<sharding:props>
<!-- 显示SQL -->
<prop key="sql.show">true</prop>
</sharding:props>
</sharding:data-source>

六、数据分片

6.1 分片支持

Sharding-JDBC提供了5种分片策略。由于分片算法和业务实现紧密相关,因此Sharding-JDBC并未提供内置分片算法,而是通过分片策略将各种场景提炼出来,提供更高层级的抽象,并提供接口让应用开发者自行实现分片算法。

StandardShardingStrategy

标准分片策略。提供对SQL语句中的=, IN和BETWEEN AND的分片操作支持。StandardShardingStrategy只支持单分片键,提供PreciseShardingAlgorithm和RangeShardingAlgorithm两个分片算法。PreciseShardingAlgorithm是必选的,用于处理=和IN的分片;RangeShardingAlgorithm是可选的,用于处理BETWEEN AND分片,如果不配置RangeShardingAlgorithm,SQL中的BETWEEN AND将按照全库路由处理。

ComplexShardingStrategy

复合分片策略。提供对SQL语句中的=, IN和BETWEEN AND的分片操作支持。ComplexShardingStrategy支持多分片键,由于多分片键之间的关系复杂,因此Sharding-JDBC并未做过多的封装,而是直接将分片键值组合以及分片操作符交于算法接口,完全由应用开发者实现,提供最大的灵活度。

InlineShardingStrategy

Inline表达式分片策略。使用Groovy的Inline表达式,提供对SQL语句中的=和IN的分片操作支持。InlineShardingStrategy只支持单分片键,对于简单的分片算法,可以通过简单的配置使用,从而避免繁琐的Java代码开发,如: tuser${user_id % 8} 表示t_user表按照user_id按8取模分成8个表,表名称为t_user_0到t_user_7。

HintShardingStrategy

通过Hint而非SQL解析的方式分片的策略。

NoneShardingStrategy

不分片的策略。

6.2 分片配置

标准分片配置

<!-- 标准分片策略。-->
<bean id="demoUserStandardStrategy" class="shard.strategy.DemoUserStandardStrategy"/>
<sharding:standard-strategy id="shardingDemoUserStandardStrategy"
precise-algorithm-ref="demoUserStandardStrategy" sharding-column="id" range-algorithm-ref=""/>

DemoUserStandardStrategy标准分片要实现 PreciseShardingAlgorithm 接口,doSharding的两个参数一个是所有数据源的cllection.另一个参数是执行SQL时传过来的分片的值。

/**
* 根据ID取
* 标准分片策略
* 用于处理=和IN的分片
* @author yulonggao
* @date 2019/1/31 14:35
*/
@Slf4j
public class DemoUserStandardStrategy implements PreciseShardingAlgorithm<Long> { @Override
public String doSharding(Collection<String> collection, PreciseShardingValue<Long> preciseShardingValue) {
//这个里边有异常会被处理掉,然后导致拿不到分片。但出异常一般是业务代码写错了。
//每条指定分片的操作都会调用此方法,如果是in 条件查询的话每个值会调用一次此方法,如果是批量插入也是每一条都要调用一次进行分片
log.info("DemoUserStandardStrategy_preciseShardingValue={}", preciseShardingValue);
Long suffix = preciseShardingValue.getValue() % ;
log.info("suffix={}", suffix);
final String targetDb = String.valueOf(Math.abs(suffix.intValue()));
String shardingValue = collection.stream().filter(p -> p.endsWith(targetDb)).findFirst().get();
log.info("preciseShardingValue={},shardingValue={}", preciseShardingValue, shardingValue);
return shardingValue;
}

强制分片

<!-- 强制路由分片策略-->
<bean id="demoUserHintStrategy" class="shard.strategy.DemoUserHintStrategy"/> <!-- 强制路由例子使用-->
<sharding:hint-strategy id="shardingDemoUserHintStrategy" algorithm-ref="demoUserHintStrategy"/> DemoUserHintStrategy 的Java 如下,强制分片要实现HintShardingAlgorithm接口。 /**
* DemoUserHint强制路由分片策略,其实可以共用,只是例子
* @author yulonggao
* @date 2019/1/31 14:35
*/
@Slf4j
public class DemoUserHintStrategy implements HintShardingAlgorithm { @Override
public Collection<String> doSharding(Collection<String> availableTargetNames, ShardingValue shardingValue) {
//availableTargetNames 这个参数是所有的dataSource的集合,shardingValue是HintManager传过来的分片信息
log.info("DemoUserHintStrategy_availableTargetNames={}", availableTargetNames);
log.info("DemoUserHintStrategy_shardingValue={}", shardingValue);
ListShardingValue listShardingValue = (ListShardingValue) shardingValue;
Collection shardingValueList = listShardingValue.getValues();
//因为调用的时候分片是直接传的 DataSource的名称,所以直接返回就可以了,如果传其它值则要加业务逻辑进行分片筛选
//返回结果只能是availableTargetNames 里边所包含的
return shardingValueList;
} }

生成分部式ID的配置,生成主键的类要实现KeyGenerator接口。

<!—主键生成 -->
<bean id="keyId" class="shard.key.DefaultKeyGenerator"/>

七、分布式事务

把下面这行代码配置在spring里,shardingTransaction.xml 是jar包里边带的。

文件的源码只有两行配置:

<bean id="transactionManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="shardingDataSource"></property>
</bean>
<tx:annotation-driven transaction-manager="transactionManager"/>
<!-- 事务支持-->
<import resource="classpath:META-INF/shardingTransaction.xml"/>

使用注解配置事务要同时使用ShardingTransactionType和Transactional两个注解。

/**
* 注意:@ShardingTransactionType需要同Spring的@Transactional配套使用,事务才会生效。
* @param param
* @return
*/
@ShardingTransactionType(TransactionType.XA)
@Transactional(rollbackFor = Exception.class)
@Override
public int addParam(DemoParam param) {
log.info("addParam-param={}", param);
return demoParamDao.addParam(param);
}

7.1 支持程度

完全支持非跨库事务,例如:仅分表或分库但是路由的结果在单库中。

完全支持因逻辑异常导致的跨库事务。例如:同一事务中跨两个库更新,更新完毕后,抛出空指针,则两个库的内容都能回滚。

支持数据库字段约束造成的回滚。

不支持因网络、硬件异常导致的跨库事务。例如:同一事务中跨两个库更新,更新完毕后、未提交之前,第一个库死机,则只有第二个库数据提交。

八、其他问题

关于order by 排序,如果排序的字段不在查询结果中,生成的SQL也会被带上,但结果不返回给你。

九、参考文档

https://shardingsphere.apache.org/document/current/cn/manual/sharding-jdbc/usage/sharding/

作者:高玉珑

来源:宜信技术学院

Sharding-JDBC 使用入门和基本配置的更多相关文章

  1. 学习Sharding JDBC 从入门到出门-02:源码揣测

    sjdbc有读写分离的功能,要使用这个功能,在创建数据源对象是要使用类:MasterSlaveDataSource,并且设置主备数据源和数据库名称 这个对象有下面的属性: name:数据库的名称 ma ...

  2. 学习Sharding JDBC 从入门到出门-1

    感觉大神已经写好了,自己膜拜下下, 送上大神地址:http://www.cnblogs.com/zhongxinWang/p/4262650.html 这篇博客主要是理论的说明了什么是分库分表,路由等 ...

  3. sharding jdbc(sphere) 3.1.0 spring boot配置

    sharding jdbc 2.x系列详解参见https://www.cnblogs.com/zhjh256/p/9221634.html. 最近将sharding jdbc的配置从xml切换到了sp ...

  4. spring boot:配置shardingsphere(sharding jdbc)使用druid数据源(druid 1.1.23 / sharding-jdbc 4.1.1 / mybatis / spring boot 2.3.3)

    一,为什么要使用druid数据源? 1,druid的优点 Druid是阿里巴巴开发的号称为监控而生的数据库连接池 它的优点包括: 可以监控数据库访问性能 SQL执行日志 SQL防火墙 但spring ...

  5. 在Eclipse中使用JDBC访问MySQL数据库的配置方法

    在Eclipse中使用JDBC访问MySQL数据库的配置方法 分类: DATABASE 数据结构与算法2009-10-10 16:37 5313人阅读 评论(10) 收藏 举报 jdbcmysql数据 ...

  6. Spring boot项目集成Sharding Jdbc

    环境 jdk:1.8 framework: spring boot, sharding jdbc database: MySQL 搭建步骤 在pom 中加入sharding 依赖 <depend ...

  7. Sharding JDBC整合SpringBoot 2.x 和 MyBatis Plus 进行分库分表

    Sharding JDBC整合SpringBoot 2.x 和 MyBatis Plus 进行分库分表 交易所流水表的单表数据量已经过亿,选用Sharding-JDBC进行分库分表.MyBatis-P ...

  8. Sharding jdbc 强制路由策略(HintShardingStrategy)使用记录

    背景 随着项目运行时间逐渐增加,数据库中的数据也越来越多,虽然加索引,优化查询,但是数据量太大,还是会影响查询效率,也给数据库增加了负载. 再加上冷数据基本不使用的场景,决定采用分表来处理数据,从而来 ...

  9. JDBC基础:JDBC快速入门,JDBC工具类,SQL注入攻击,JDBC管理事务

    JDBC基础 重难点梳理 一.JDBC快速入门 1.jdbc的概念 JDBC(Java DataBase Connectivity:java数据库连接)是一种用于执行SQL语句的Java API,可以 ...

随机推荐

  1. SpringMVC的优点

    SpringMVC的优点 清晰的角色划分:控制器(controller).验证器(validator).命令对象(command obect).表单对象(form object).模型对象(model ...

  2. unit Base64Unit;

    unit Base64Unit; unit Base64Unit; //Download by http://www.codefans.net interface uses Classes, SysU ...

  3. ASP.WEB Form 几点知识

    1.GridView 行的多选 <asp:TemplateField ControlStyle-Width="30" HeaderText="选择" &g ...

  4. 日期工具类 DateUtils(继承org.apache.commons.lang.time.DateUtils类)

    /** * */ package com.dsj.gdbd.utils.web; import org.apache.commons.lang3.time.DateFormatUtils; impor ...

  5. linux应用之vim的常用命令

    vim 选择文本,删除,复制,粘贴 文本的选择,对于编辑器来说,是很基本的东西,也经常被用到,总结如下: v 从光标当前位置开始,光标所经过的地方会被选中,再按一下v结束. V 从光标当前行开始,光标 ...

  6. python密钥登录主机

    #!/usr/bin/python # -*- coding:utf-8 -*- ################################### # # 检查主机的损坏磁盘 # ####### ...

  7. bzoj 3779: 重组病毒 LCT+线段树+倍增

    题目: 黑客们通过对已有的病毒反编译,将许多不同的病毒重组,并重新编译出了新型的重组病毒.这种病毒的繁殖和变异能力极强.为了阻止这种病毒传播,某安全机构策划了一次实验,来研究这种病毒. 实验在一个封闭 ...

  8. 使用MDI窗体实现多窗口效果

    本文章已收录于:   C#MDI窗体实现多窗口效果   Visual C#是微软公司推出的下一代主流程序开发语言,他也是一种功能十分强大的程 序设计语言,正在受到越来越多的编程人员的喜欢.在Visua ...

  9. 白话算法(6) 散列表(Hash Table) 从理论到实用(下)

    [澈丹,我想要个钻戒.][小北,等等吧,等我再修行两年,你把我烧了,舍利子比钻戒值钱.] ——自扯自蛋 无论开发一个程序还是谈一场恋爱,都差不多要经历这么4个阶段: 1)从零开始.没有束缚的轻松感.似 ...

  10. SVN使用技巧和参考文档总结

    以下文章为网上收集: myEclipse 8.5下SVN环境的搭建(重点推荐) SVN建立版本库,配置用户和权限 Tortoise SVN使用方法,简易图解 版本控制软件SVN使用方法详解 学习笔记 ...