Sharding-JDBC 使用入门和基本配置
一、什么是Sharding-JDBC
Sharding-JDBC定位为轻量级Java框架,在Java的JDBC层提供的额外服务。它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。
二、Sharding-JDBC能做什么
分库 & 分表
读写分离
分布式主键
分布式事务
三、适用项目框架
Sharding-JDBC适用于:
任何基于Java的ORM框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template或直接使用JDBC。
基于任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid, HikariCP等。
支持任意实现JDBC规范的数据库,目前支持MySQL,Oracle,SQLServer和PostgreSQL。
四、Maven依赖
<!-- sharding jdbc 开始-->
<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-core</artifactId>
<version>${sharding.version}</version>
</dependency>
<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-jdbc-spring-namespace</artifactId>
<version>${sharding.version}</version>
</dependency>
<!—如果不配置分布式事务的话配置上边两个就够了 -->
<!--分布式事务引用依赖-->
<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-transaction-2pc-xa</artifactId>
<version>${sharding.version}</version> </dependency>
<dependency>
<groupId>io.shardingsphere</groupId>
<artifactId>sharding-transaction-spring</artifactId>
<version>${sharding.version}</version>
</dependency>
<!-- sharding jdbc 结束-->
<!--AspectJ AOP支持 -->
<dependency>
<groupId>org.aspectj</groupId>
<artifactId>aspectjweaver</artifactId>
<version>${aspectjweaver.version}</version>
</dependency>
五、读写分离
5.1 数据源配置
先配置数据源
也可以配置读写分离
以下配置是ds0
和ds1
两个数据库的主和从一共四个数据源。
parentDs
是数据源公共的配置,抽出去以免写重复代码。
<!-- ds0的主-->
<bean id="ds0_master" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close" parent="parentDs">
<property name="driverClassName" value=""/>
<property name="url" value=""/>
</bean>
<!-- ds0的从-->
<bean id="ds0_slave" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close" parent="parentDs">
<property name="driverClassName" value=""/>
<property name="url" value="${sharding.connection.url.0}"/>
</bean>
<!-- ds1的主-->
<bean id="ds1_master" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close" parent="parentDs">
<property name="driverClassName" value=""/>
<property name="url" value="${sharding.connection.url.1}"/>
</bean>
<!-- ds1的从-->
<bean id="ds1_slave" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close" parent="parentDs">
<property name="driverClassName" value=""/>
<property name="url" value="${sharding.connection.url.1}"/>
</bean>
5.2 读写分离配置
只配置主从不配置分库分表的情况如下,如果要配置分库分表则不需要下面这个配置。
master-data-source-name
是主数据源ID
slave-data-source-names
是从数据源ID
<master-slave:data-source id="masterSlaveDataSource" master-data-source-name="ds0_master, ds1_master" slave-data-source-names="ds0_slave, ds1_slave " >
<master-slave:props>
<prop key="sql.show">${sql_show}</prop>
<prop key="executor.size"></prop>
<prop key="foo">bar</prop>
</master-slave:props>
</master-slave:data-source>
5.3 读写分离和分库分表一起配置
如果读写分离和分库分表一起使用的话把主从路由配置到 shardingdata-source下就可以了。
sharding:master-slave-rule
的 id 就是配置出来的逻辑的数据源的名称,如果多个从的话还可以通过配置strategy-ref来配置负载均衡。
master-data-source
配置的是主库数据源ID 。
slave-data-source
配置的是从库数据源ID,多个以逗号分开。
<!-- sharding数据源-->
<sharding:data-source id="shardingDataSource">
<!-- 读写分离的话要把所有的主从数据源都写在这里-->
<sharding:sharding-rule
data-source-names="ds0_master,ds0_slave,ds1_master,ds1_slave ">
<!-- 读写分离的路由 一主一从配置 strategy-ref -->
<sharding:master-slave-rules>
<sharding:master-slave-rule id="ds0" master-data-source-name="ds0_master" slave-data-source-names="ds0_slave"/>
<sharding:master-slave-rule id="ds1" master-data-source-name="ds1_master" slave-data-source-names="ds1_slave"/>
</sharding:master-slave-rules>
<!-- 读写分离配置 结束--> <sharding:table-rules>
<!— 这里是分库分表路由的配置 -->
</sharding:table-rules>
<sharding:binding-table-rules>
<!—- 绑定表的配置 -->
</sharding:binding-table-rules>
</sharding:sharding-rule>
<sharding:props>
<!-- 显示SQL -->
<prop key="sql.show">true</prop>
</sharding:props>
</sharding:data-source>
六、数据分片
6.1 分片支持
Sharding-JDBC提供了5种分片策略。由于分片算法和业务实现紧密相关,因此Sharding-JDBC并未提供内置分片算法,而是通过分片策略将各种场景提炼出来,提供更高层级的抽象,并提供接口让应用开发者自行实现分片算法。
StandardShardingStrategy
标准分片策略。提供对SQL语句中的=, IN和BETWEEN AND的分片操作支持。StandardShardingStrategy只支持单分片键,提供PreciseShardingAlgorithm和RangeShardingAlgorithm两个分片算法。PreciseShardingAlgorithm是必选的,用于处理=和IN的分片;RangeShardingAlgorithm是可选的,用于处理BETWEEN AND分片,如果不配置RangeShardingAlgorithm,SQL中的BETWEEN AND将按照全库路由处理。
ComplexShardingStrategy
复合分片策略。提供对SQL语句中的=, IN和BETWEEN AND的分片操作支持。ComplexShardingStrategy支持多分片键,由于多分片键之间的关系复杂,因此Sharding-JDBC并未做过多的封装,而是直接将分片键值组合以及分片操作符交于算法接口,完全由应用开发者实现,提供最大的灵活度。
InlineShardingStrategy
Inline表达式分片策略。使用Groovy的Inline表达式,提供对SQL语句中的=和IN的分片操作支持。InlineShardingStrategy只支持单分片键,对于简单的分片算法,可以通过简单的配置使用,从而避免繁琐的Java代码开发,如: tuser${user_id % 8} 表示t_user表按照user_id按8取模分成8个表,表名称为t_user_0到t_user_7。
HintShardingStrategy
通过Hint而非SQL解析的方式分片的策略。
NoneShardingStrategy
不分片的策略。
6.2 分片配置
标准分片配置
<!-- 标准分片策略。-->
<bean id="demoUserStandardStrategy" class="shard.strategy.DemoUserStandardStrategy"/>
<sharding:standard-strategy id="shardingDemoUserStandardStrategy"
precise-algorithm-ref="demoUserStandardStrategy" sharding-column="id" range-algorithm-ref=""/>
DemoUserStandardStrategy标准分片要实现 PreciseShardingAlgorithm 接口,doSharding的两个参数一个是所有数据源的cllection.另一个参数是执行SQL时传过来的分片的值。
/**
* 根据ID取
* 标准分片策略
* 用于处理=和IN的分片
* @author yulonggao
* @date 2019/1/31 14:35
*/
@Slf4j
public class DemoUserStandardStrategy implements PreciseShardingAlgorithm<Long> { @Override
public String doSharding(Collection<String> collection, PreciseShardingValue<Long> preciseShardingValue) {
//这个里边有异常会被处理掉,然后导致拿不到分片。但出异常一般是业务代码写错了。
//每条指定分片的操作都会调用此方法,如果是in 条件查询的话每个值会调用一次此方法,如果是批量插入也是每一条都要调用一次进行分片
log.info("DemoUserStandardStrategy_preciseShardingValue={}", preciseShardingValue);
Long suffix = preciseShardingValue.getValue() % ;
log.info("suffix={}", suffix);
final String targetDb = String.valueOf(Math.abs(suffix.intValue()));
String shardingValue = collection.stream().filter(p -> p.endsWith(targetDb)).findFirst().get();
log.info("preciseShardingValue={},shardingValue={}", preciseShardingValue, shardingValue);
return shardingValue;
}
强制分片
<!-- 强制路由分片策略-->
<bean id="demoUserHintStrategy" class="shard.strategy.DemoUserHintStrategy"/> <!-- 强制路由例子使用-->
<sharding:hint-strategy id="shardingDemoUserHintStrategy" algorithm-ref="demoUserHintStrategy"/> DemoUserHintStrategy 的Java 如下,强制分片要实现HintShardingAlgorithm接口。 /**
* DemoUserHint强制路由分片策略,其实可以共用,只是例子
* @author yulonggao
* @date 2019/1/31 14:35
*/
@Slf4j
public class DemoUserHintStrategy implements HintShardingAlgorithm { @Override
public Collection<String> doSharding(Collection<String> availableTargetNames, ShardingValue shardingValue) {
//availableTargetNames 这个参数是所有的dataSource的集合,shardingValue是HintManager传过来的分片信息
log.info("DemoUserHintStrategy_availableTargetNames={}", availableTargetNames);
log.info("DemoUserHintStrategy_shardingValue={}", shardingValue);
ListShardingValue listShardingValue = (ListShardingValue) shardingValue;
Collection shardingValueList = listShardingValue.getValues();
//因为调用的时候分片是直接传的 DataSource的名称,所以直接返回就可以了,如果传其它值则要加业务逻辑进行分片筛选
//返回结果只能是availableTargetNames 里边所包含的
return shardingValueList;
} }
生成分部式ID的配置,生成主键的类要实现KeyGenerator接口。
<!—主键生成 -->
<bean id="keyId" class="shard.key.DefaultKeyGenerator"/>
七、分布式事务
把下面这行代码配置在spring里,shardingTransaction.xml 是jar包里边带的。
文件的源码只有两行配置:
<bean id="transactionManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="shardingDataSource"></property>
</bean>
<tx:annotation-driven transaction-manager="transactionManager"/>
<!-- 事务支持-->
<import resource="classpath:META-INF/shardingTransaction.xml"/>
使用注解配置事务要同时使用ShardingTransactionType和Transactional两个注解。
/**
* 注意:@ShardingTransactionType需要同Spring的@Transactional配套使用,事务才会生效。
* @param param
* @return
*/
@ShardingTransactionType(TransactionType.XA)
@Transactional(rollbackFor = Exception.class)
@Override
public int addParam(DemoParam param) {
log.info("addParam-param={}", param);
return demoParamDao.addParam(param);
}
7.1 支持程度
完全支持非跨库事务,例如:仅分表或分库但是路由的结果在单库中。
完全支持因逻辑异常导致的跨库事务。例如:同一事务中跨两个库更新,更新完毕后,抛出空指针,则两个库的内容都能回滚。
支持数据库字段约束造成的回滚。
不支持因网络、硬件异常导致的跨库事务。例如:同一事务中跨两个库更新,更新完毕后、未提交之前,第一个库死机,则只有第二个库数据提交。
八、其他问题
关于order by 排序,如果排序的字段不在查询结果中,生成的SQL也会被带上,但结果不返回给你。
九、参考文档
https://shardingsphere.apache.org/document/current/cn/manual/sharding-jdbc/usage/sharding/
作者:高玉珑
来源:宜信技术学院
Sharding-JDBC 使用入门和基本配置的更多相关文章
- 学习Sharding JDBC 从入门到出门-02:源码揣测
sjdbc有读写分离的功能,要使用这个功能,在创建数据源对象是要使用类:MasterSlaveDataSource,并且设置主备数据源和数据库名称 这个对象有下面的属性: name:数据库的名称 ma ...
- 学习Sharding JDBC 从入门到出门-1
感觉大神已经写好了,自己膜拜下下, 送上大神地址:http://www.cnblogs.com/zhongxinWang/p/4262650.html 这篇博客主要是理论的说明了什么是分库分表,路由等 ...
- sharding jdbc(sphere) 3.1.0 spring boot配置
sharding jdbc 2.x系列详解参见https://www.cnblogs.com/zhjh256/p/9221634.html. 最近将sharding jdbc的配置从xml切换到了sp ...
- spring boot:配置shardingsphere(sharding jdbc)使用druid数据源(druid 1.1.23 / sharding-jdbc 4.1.1 / mybatis / spring boot 2.3.3)
一,为什么要使用druid数据源? 1,druid的优点 Druid是阿里巴巴开发的号称为监控而生的数据库连接池 它的优点包括: 可以监控数据库访问性能 SQL执行日志 SQL防火墙 但spring ...
- 在Eclipse中使用JDBC访问MySQL数据库的配置方法
在Eclipse中使用JDBC访问MySQL数据库的配置方法 分类: DATABASE 数据结构与算法2009-10-10 16:37 5313人阅读 评论(10) 收藏 举报 jdbcmysql数据 ...
- Spring boot项目集成Sharding Jdbc
环境 jdk:1.8 framework: spring boot, sharding jdbc database: MySQL 搭建步骤 在pom 中加入sharding 依赖 <depend ...
- Sharding JDBC整合SpringBoot 2.x 和 MyBatis Plus 进行分库分表
Sharding JDBC整合SpringBoot 2.x 和 MyBatis Plus 进行分库分表 交易所流水表的单表数据量已经过亿,选用Sharding-JDBC进行分库分表.MyBatis-P ...
- Sharding jdbc 强制路由策略(HintShardingStrategy)使用记录
背景 随着项目运行时间逐渐增加,数据库中的数据也越来越多,虽然加索引,优化查询,但是数据量太大,还是会影响查询效率,也给数据库增加了负载. 再加上冷数据基本不使用的场景,决定采用分表来处理数据,从而来 ...
- JDBC基础:JDBC快速入门,JDBC工具类,SQL注入攻击,JDBC管理事务
JDBC基础 重难点梳理 一.JDBC快速入门 1.jdbc的概念 JDBC(Java DataBase Connectivity:java数据库连接)是一种用于执行SQL语句的Java API,可以 ...
随机推荐
- angularjs 系列之$q和promise
还是同一个项目,在项目中,发现多个controller之内有一个共同的服务器请求,当时只是不断的重复使用,如今,现在项目结束,代码开始走向了优化迭代的阶段: 首先,我的思路是把这个共同的请求,从con ...
- R数据类型
2.2.1 向量向量是用于存储数值型.字符型或逻辑型数据的一维数组.执行组合功能的函数c()可用来创建向量.各类向量如下例所示: a <-c(1, 2, 5, 3, 6, -2, 4) b &l ...
- Android退出应用最优雅的方式(改进版)
Android退出应用最优雅的方式(改进版)(转) 我们先来看看几种常见的退出方法(不优雅的方式) 一.容器式 建立一个全局容器,把所有的Activity存储起来,退出时循环遍历finish所有Act ...
- Python基础-常用模块OS
模块:一个python文件就是一个模块,模块分三种: 1,标准模块,也就是python自带的模块,例如import time,random,string等等 2,第三方模块,这种模块需要自己安装才能 ...
- 使用JQuery,动态增加列
这也是我在自己学做网站时无意搞出来的,希望可以对别人有所启发 <%@ page language="java" import="java.util.*" ...
- C/C++ 安全编码 —— 不安全的函数
1. 文件与IO操作 gets():从控制台输入到字符数组: char response[8]; gets(response); 如果控制台输入超过 8 个字符,程序便会发生不确定的行为.其主要问题在 ...
- 设计模式 之 《建造者模式(Builder)》
#ifndef __BUILDER_MODEL__ #define __BUILDER_MODEL__ #include <string> #include <vector> ...
- [HDU5290]Bombing plan
vjudge sol 树DP. 首先把模型转换成:每个点可以控制与它距离不超过\(w_i\)的点,先要求选出数量最少的点控制所有点. 设\(f[i][-100...100]\)表示\(i\)号点向上还 ...
- Windows 任务管理器中的几个内存概念
我们使用的大部分 PC 是基于 Intel 微处理器的 x86 和 x64 架构计算机. 因此, 我们面对的 windows 避免不了和 Intel 架构有些设计上的契合. 比如接下来要说到的内存管理 ...
- 第四章——Lock的使用
本章主要是讲解:使用Lock对象也能实现同步效果,而且使用起来更方便. 主要掌握两个方面: ReentrantLock类的使用 ReenTrantReadWriteLock类的使用