Longest Common Subsequence最长公共子序列:

每个dp位置表示的是第i、j个字母的最长公共子序列

class Solution {
public:
int findLength(vector<int>& A, vector<int>& B) {
int len1 = A.size();
int len2 = B.size();
if(len1 == || len2 == )
return ; vector<vector<int>> result(len1+,vector<int>(len2+));
for(int i = ;i <= len1;i++){          //第一行第一列都为0,因为第一行第一列都没有字符串
result[i][] = ;
}
for(int i = ;i <= len2;i++){
result[][i] = ;
}
for(int i = ;i <= len1;i++){
for(int j = ;j <= len2;j++){
if(A[i-] == B[j-])
result[i][j] = result[i-][j-] + ;
else
result[i][j] = max(result[i-][j],result[i][j-]);
}
}
return result[len1][len2];
}
};

Longest Common Substring最长公共子串

每个dp代表以i、j这个坐标的最长公共子串,所以求最终的要遍历所有的

class Solution {
public:
int findLength(vector<int>& A, vector<int>& B) {
int len1 = A.size();
int len2 = B.size();
if(len1 == || len2 == )
return ; vector<vector<int>> result(len1+,vector<int>(len2+));
for(int i = ;i <= len1;i++){            //第一行第一列都为0
result[i][] = ;
}
for(int i = ;i <= len2;i++){
result[][i] = ;
}
for(int i = ;i <= len1;i++){
for(int j = ;j <= len2;j++){
if(A[i-] == B[j-])
result[i][j] = result[i-][j-] + ;
else
result[i][j] = ;
}
}
int maxnum = 0x80000000;
for(int i = ;i <= len1;i++){
for(int j = ;j <= len2;j++){
if(result[i][j] > maxnum)
maxnum = result[i][j];
}
}
return maxnum;
}
};

更简洁的一种写法:

class Solution {
public:
/**
* @param A: A string
* @param B: A string
* @return: the length of the longest common substring.
*/
int longestCommonSubstring(string &A, string &B) {
// write your code here
int m = A.size();
int n = B.size();
vector<vector<int> > dp(m+,vector<int>(n+));
for(int i = ;i <= m;i++)
dp[i][] = ;
for(int i = ;i <= n;i++)
dp[][i] = ;
int max_num = ;
for(int i = ;i <= m;i++){
for(int j = ;j <= n;j++){
if(A[i-] == B[j-]){
dp[i][j] = dp[i-][j-] + ;
max_num = max(max_num,dp[i][j]);
}
else
dp[i][j] = ;
}
}
return max_num;
}
};

相同:都要建立m+1,n+1的二维数组

区别:1. 最长公共子串要求连续的,最长公共子序列可以不连续,所以dp的递推公式第二项不同

   2. 最长公共子序列最后一个值就是最长,最长公共子串要比较哪个位置最长

lintcode 77.Longest Common Subsequence(最长公共子序列)、79. Longest Common Substring(最长公共子串)的更多相关文章

  1. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  2. 动态规划之最长公共子序列LCS(Longest Common Subsequence)

    一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...

  3. 动态规划 ---- 最长公共子序列(Longest Common Subsequence, LCS)

    分析: 完整代码: // 最长公共子序列 #include <stdio.h> #include <algorithm> using namespace std; ; char ...

  4. (最长公共子序列 暴力) Common Subsequence (poj 1458)

    http://poj.org/problem?id=1458 Description A subsequence of a given sequence is the given sequence w ...

  5. 最长上升子序列 LIS(Longest Increasing Subsequence)

    引出: 问题描述:给出一个序列a1,a2,a3,a4,a5,a6,a7….an,求它的一个子序列(设为s1,s2,…sn),使得这个子序列满足这样的性质,s1<s2<s3<…< ...

  6. C#LeetCode刷题之#594-最长和谐子序列​​​​​​​​​​​​​​(Longest Harmonious Subsequence)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3800 访问. 和谐数组是指一个数组里元素的最大值和最小值之间的差 ...

  7. 最长上升子序列(Longest increasing subsequence)

    问题描述        对于一串数A={a1a2a3…an},它的子序列为S={s1s2s3…sn},满足{s1<s2<s3<…<sm}.求A的最长子序列的长度. 动态规划法 ...

  8. LeetCode 300. 最长上升子序列(Longest Increasing Subsequence)

    题目描述 给出一个无序的整形数组,找到最长上升子序列的长度. 例如, 给出 [10, 9, 2, 5, 3, 7, 101, 18], 最长的上升子序列是 [2, 3, 7, 101],因此它的长度是 ...

  9. 最长公共子序列(LCS)和最长递增子序列(LIS)的求解

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  10. 最长公共子序列(LCS)、最长递增子序列(LIS)、最长递增公共子序列(LICS)

    最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...

随机推荐

  1. 1.2 rust cargo

    cargo是rust的编译与打包工具,可将rust打包成为一个可执行性文件.生成的可执行性文件不能跨系统的大版本,比如在linux7上打包,那么程序无法在linux6上执行. # cargo new ...

  2. JQuery 判断滚动条是否到底部

    BottomJumpPage: function () { var scrollTop = $(this).scrollTop(); var scrollHeight = $(document).he ...

  3. ajax禁止浏览器缓存

    把cache 设置为false ,把 ifModified 设置为true //工作计划function workprogram(date_time){    $.ajax({        asyn ...

  4. 【3dsMax安装失败,如何卸载、安装3dMax 2018?】

    AUTODESK系列软件着实令人头疼,安装失败之后不能完全卸载!!!(比如maya,cad,3dsmax等).有时手动删除注册表重装之后还是会出现各种问题,每个版本的C++Runtime和.NET f ...

  5. Murano Weekly Meeting 2015.12.01

    Meeting time: 2015.December.1st 1:00~2:00 Chairperson:  Nikolay Starodubtsev, from Mirantis Meeting ...

  6. lscons 命令,设置当前控制台设备的名称写至标准输出

    用途 将当前控制台设备的名称写至标准输出. 语法 lscons [ -s ] [ -a | -O ] lscons -b [ -s ] [ -a | -O ] lscons -d [ -s ] 描述 ...

  7. Java入门之Tomcat运行

    在上一篇<Java入门之Tomcat安装及环境变量配置>中提到,启动Tomcat要保持CMD下执行startup.bat的界面不关闭,才能访问Tomcat. 这是因为只有保持startup ...

  8. kafka存储机制以及offset

    1.前言 一个商业化消息队列的性能好坏,其文件存储机制设计是衡量一个消息队列服务技术水平和最关键指标之一.下面将从Kafka文件存储机制和物理结构角度,分析Kafka是如何实现高效文件存储,及实际应用 ...

  9. FastDFS 基础知识

    FastDFS是一个开源的轻量级分布式文件系统,它用纯C语言实现,支持Linux.FreeBSD.AIX等UNIX系统.它只能通过专有API对文件进行存取访问,不支持POSIX接口方式,不能mount ...

  10. ReactNative-JS 调用原生方法实例代码(转载)

    第一步首先创建ReactNative 模块类继承ReactContextBaseJavaModule package com.mixture;   import android.content.Con ...