题意:给定一个n*n的地图,上面有k个障碍点不能走,有一个机器人从(0,0)出发,每次等概率的不动或者往上下左右没有障碍的地方走动,问走无限步后停在图的右下部的概率

n<=1e4,k<=1e3

思路:据说是找规律

      From https://blog.csdn.net/anna__1997/article/details/78494788  牛逼的证明

   马尔科夫链的随机游走模型

  • 可建立状态转移矩阵,对n * n 的图中n * n 个点编号为0 ~[ (n - 1) * n + n – 1] 设最大编号为max
    P = p(i, j) = [p(0, 0) p(0, 1) … p(0, max)
    P(1, 0) p(1, 1) … p(1, max)

    P(max, 0) p(max, 1) … p(max, max)]
    π(i) 为i时间各点的概率
    π(n + 1) = π(n) * P
    当时间->无穷 π(n + 1)->π
    可以通过 π * P = π 计算
    验证猜测结果正确
    *******************************************************
    找规律的答案 有待证明
    现在能想到的是 整个封闭系统每个格子以出现机器人的概率作为权值 在很长的时间线上是一个熵增的
    过程(想到元胞自动机),如果要模拟这个概率扩散的过程的话,格子的权值的更新是一个用他所能到达的格子的权值
    和他自身的权值迭代的过程,这个过程中可以发现他的相邻的格子的权值是在不断同化的,因此,在无穷远后
    (0, 0)的和他周围的格子的权值不在体现优势,而更加开放的格子则更占优(可根据迭代公式理解)

    *******************************************************

    考虑每个障碍点对答案的影响,找规律后的得到只与障碍点所在的位置与周围的联通情况有关

    判格子是不是障碍可以用set

     #include<cstdio>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<iostream>
    #include<algorithm>
    #include<map>
    #include<set>
    #include<queue>
    #include<vector>
    using namespace std;
    typedef long long ll;
    typedef unsigned int uint;
    typedef unsigned long long ull;
    typedef pair<int,int> PII;
    typedef vector<int> VI;
    #define fi first
    #define se second
    #define MP make_pair
    #define N 11000
    #define M 210
    #define MOD 1e9+7
    #define eps 1e-8
    #define pi acos(-1)
    int dx[]={,-,,,},dy[]={,,,-,};
    set<int>st; int read()
    {
    int v=,f=;
    char c=getchar();
    while(c<||<c) {if(c=='-') f=-; c=getchar();}
    while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
    return v*f;
    } int gcd(int x,int y)
    {
    if(y==) return x;
    return gcd(y,x%y);
    } int main()
    {
    //freopen("hdoj6229.in","r",stdin);
    //freopen("hdoj6299.out","w",stdout);
    int cas;
    scanf("%d",&cas);
    for(int v=;v<=cas;v++)
    {
    st.clear();
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=;i<=m;i++)
    {
    int x,y;
    scanf("%d%d",&x,&y);
    st.insert(x*N+y);
    }
    int s1=n*n*-n*;
    int s2=n*(n+)/*-*n-;
    set<int>::iterator t=st.begin();
    while(t!=st.end())
    {
    int s=*t;
    int x=s/N;
    int y=s%N;
    for(int i=;i<=;i++)
    {
    int tx=x+dx[i];
    int ty=y+dy[i];
    if(tx<||tx>=n||ty<||ty>=n||st.count(tx*N+ty)) continue;
    s1--;
    if(tx+ty>=n-) s2--;
    } if(x+y>=n-)
    {
    s2-=;
    if(x==||x==n-) s2++;
    if(y==||y==n-) s2++;
    } s1-=;
    if(x==||x==n-) s1++;
    if(y==||y==n-) s1++;
    t++;
    } int k=gcd(s1,s2);
    printf("Case #%d: %d/%d\n",v,s2/k,s1/k);
    }
    return ;
    }

【HDOJ6229】Wandering Robots(马尔科夫链,set)的更多相关文章

  1. 从随机过程到马尔科夫链蒙特卡洛方法(MCMC)

    从随机过程到马尔科夫链蒙特卡洛方法 1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning t ...

  2. 蒙特卡洛马尔科夫链(MCMC)

    蒙特卡洛马尔科夫链(MCMC) 标签: 机器学习重要性采样MCMC蒙特卡洛 2016-12-30 20:34 3299人阅读 评论(0) 收藏 举报  分类: 数据挖掘与机器学习(41)  版权声明: ...

  3. MCMC(二)马尔科夫链

    MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)M-H采样和Gibbs采样(待填坑) 在MCMC(一)蒙特卡罗方法中,我们讲到了如何用蒙特卡罗方法来随机模拟求解一些复杂的连续积分或 ...

  4. 《principles of model checking》中的离散时间马尔科夫链

    <principles of model checking>中的离散时间马尔科夫链 说明:此文为我自学<principles of model checking>第十章内容的笔 ...

  5. 13张动图助你彻底看懂马尔科夫链、PCA和条件概率!

    13张动图助你彻底看懂马尔科夫链.PCA和条件概率! https://mp.weixin.qq.com/s/ll2EX_Vyl6HA4qX07NyJbA [ 导读 ] 马尔科夫链.主成分分析以及条件概 ...

  6. N元马尔科夫链的实现

    马尔可夫模型(Markov Model)是一种统计模型,广泛应用在语音识别,词性自动标注,音字转换,概率文法等各个自然语言处理等应用领域.经过长期发展,尤其是在语音识别中的成功应用,使它成为一种通用的 ...

  7. 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)

    (学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...

  8. Chapter 4 马尔科夫链

    4.1 引言 现在要研究的是这样一种过程: 表示在时刻的值(或者状态),想对一串连续时刻的值,比如:,, ... 建立一个概率模型. 最简单的模型就是:假设都是独立的随机变量,但是通常这种假设都是没什 ...

  9. 【强化学习】MOVE37-Introduction(导论)/马尔科夫链/马尔科夫决策过程

    写在前面的话:从今日起,我会边跟着硅谷大牛Siraj的MOVE 37系列课程学习Reinforcement Learning(强化学习算法),边更新这个系列.课程包含视频和文字,课堂笔记会按视频为单位 ...

随机推荐

  1. LINQ与反射

    string file = @"C:\Windows\winsxs\x86_netfx35linq-system.core_31bf3856ad364e35_6.1.7601.17514_n ...

  2. 【转】 VC中TCP实现 异步套接字编程的原理+代码

    所谓的异步套接字编程就是  调用了 如下函数   WSAAsyncSelect   设置了 套接字的状态为异步,有关函数我会在下面详细介绍... 异步套接字解决了 套接字编程过程中的堵塞问题 .... ...

  3. 基于matlab的蓝色车牌定位与识别---分割

    接着上面的工作,接下去就该是进行字符分割了.考虑到为了后面的字符识别,因此在这部分需要实现的目标是需要把车牌的边框全部切除,对重新定位的车牌进行垂直方向水平方向调整,保证字符是正的.最后才是字符的分割 ...

  4. ubuntu14.04搭建LAMP环境(nginx,php,mysql,linux)详解

    最近更换开发环境至ubuntu,整理开发环境和常用软件的安装配置(更新排版) 以下安装过程经过多次操作得出,参照步骤进行操作即可 一.LAMP基本环境搭建 1 切换root账号 sudo su 2,安 ...

  5. Linux 安装Nginx+PHP+MySQL教程

    一.安装nginx 通过yum安装openssl: yum -y install openssl openssl-devel 通过yum安装pcre: yum -y install pcre-deve ...

  6. Python 简单购物程序

    # Author:Eric Zhao# -*- coding:utf-8 -*-'''需求:启动程序后,让用户输入工资,然后打印商品列表允许用户根据商品编号购买商品用户选择商品后,检测余额是否够,够就 ...

  7. eclipse使用技巧的网站收集——转载(一)

    Eclipse工具使用技巧总结(转载) 首先推荐一篇非常好的How to use eclipse文章 ,讲的是eclipse使用的方方面面,非常实用,推荐给大家! 一.常用快捷键:Ctrl+F11 运 ...

  8. ZOJ 2314 (sgu 194) Reactor Cooling (无源汇有上下界最大流)

    题意: 给定n个点和m条边, 每条边有流量上下限[b,c], 求是否存在一种流动方法使得每条边流量在范围内, 而且每个点的流入 = 流出 分析: 无源汇有上下界最大流模板, 记录每个点流的 in 和 ...

  9. 线段树:CDOJ1591-An easy problem A (RMQ算法和最简单的线段树模板)

    An easy problem A Time Limit: 1000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Pr ...

  10. 笔记-python-urllib

    笔记-python-urllib 1.      简介 PYTHON3中将urllib,urllib2整合到URLLIB中 包括以下模块 urllib.request 请求模块(核心) urllib. ...