【bzoj3238】[Ahoi2013]差异

Description

Input

一行,一个字符串S

Output

一行,一个整数,表示所求值

Sample Input

cacao

Sample Output

54

题解:

任意两个字符串的lcp是什么,就是如

a,b  那么若a==b 那么为len(a)

  否则设sa[a]<sa[b] 那么为min(height[sa[a]+1-------sa[b]])

 #include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio> #define N 500007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if (ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n;
int stk[N],f[N],g[N];
struct SA
{
char s[N];
int a[N],b[N],cnta[N],cntb[N],tsa[N],height[N],sa[N],rk[N*];
void Get_SA()
{
for (int i=;i<=;i++)cnta[i]=;
for (int i=;i<=n;i++)cnta[(int)s[i]]++;
for (int i=;i<=;i++)cnta[i]+=cnta[i-];
for (int i=n;i>=;i--)sa[cnta[(int)s[i]]--]=i;
rk[sa[]]=;
for (int i=;i<=n;i++)rk[sa[i]]=rk[sa[i-]]+(s[sa[i]]!=s[sa[i-]]);
for (int i=;rk[sa[n]]!=n;i<<=)
{
for (int j=;j<=n;j++)a[j]=rk[j],b[j]=rk[j+i];
for (int j=;j<=n;j++)cnta[j]=cntb[j]=;
for (int j=;j<=n;j++)cnta[a[j]]++,cntb[b[j]]++;
for (int j=;j<=n;j++)cnta[j]+=cnta[j-],cntb[j]+=cntb[j-];
for (int j=n;j>=;j--)tsa[cntb[b[j]]--]=j;
for (int j=n;j>=;j--)sa[cnta[a[tsa[j]]]--]=tsa[j];
rk[sa[]]=;
for (int j=;j<=n;j++)
rk[sa[j]]=rk[sa[j-]]+(a[sa[j]]!=a[sa[j-]]||b[sa[j]]!=b[sa[j-]]);
}
}
void Get_Height()
{
int len=;
for (int i=;i<=n;i++)
{
if (len)len--;
while(s[i+len]==s[sa[rk[i]-]+len])len++;
height[rk[i]]=len;
}
}
}S;
int main()
{
scanf("%s",S.s+);
n=strlen(S.s+);
ll ans=;
for (int i=;i<=n;i++)
{
ans+=(ll)(i-)*i;
ans+=(ll)i*(i-)/;
}
S.Get_SA();
S.Get_Height();
int tot=;
for (int i=;i<=n;i++)
{
while(tot>&&S.height[i]<S.height[stk[tot]])
f[stk[tot--]]=i-;
stk[++tot]=i;
}
while(tot)f[stk[tot--]]=n;
tot=;
for (int i=n;i>=;i--)
{
while(tot>&&S.height[i]<=S.height[stk[tot]])g[stk[tot--]]=i+;
stk[++tot]=i;
}
while(tot)g[stk[tot--]]=;
for (int i=;i<=n;i++)
ans-=(ll)S.height[i]*(ll)(f[i]-i+)*(ll)(i-g[i]+)*;
printf("%lld\n",ans);
}

bzoj3238 [Ahoi2013]差异 后缀数组+单调栈的更多相关文章

  1. 【BZOJ-3238】差异 后缀数组 + 单调栈

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1561  Solved: 734[Submit][Status] ...

  2. 【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈

    [BZOJ3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  3. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

  4. [AHOI2013] 差异 - 后缀数组,单调栈

    [AHOI2013] 差异 Description 求 \(\sum {len(T_i) + len(T_j) - 2 lcp(T_i,T_j)}\) 的值 其中 \(T_i (i = 1,2,... ...

  5. 【bzoj3238】差异[AHOI2013](后缀数组+单调栈)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3238 这道题从大概半年以前就开始啃了,不过当时因为一些细节没调出来,看了Sakits神犇 ...

  6. [BZOJ3238][AHOI2013]差异(后缀数组)

    求和式的前两项可以直接算,问题是对于每对i,j计算LCP. 一个比较显然的性质是,LCP(i,j)是h[rk[i]+1~rk[j]]中的最小值. 从h的每个元素角度考虑,就是对每个h计算有多少对i,j ...

  7. BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】

    题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...

  8. BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈

    BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...

  9. bzoj 3238: [Ahoi2013]差异 -- 后缀数组

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个 ...

随机推荐

  1. PHP程序Laravel框架的优化技巧

    Laravel是一套简洁.优雅的php Web开发框架(PHP Web Framework).它可以让你从杂乱的代码中解脱出来,可以帮你构建一个完美的网络app,而且每行代码都简洁.富于表达力.而性能 ...

  2. CentOS配置主机名和主机映射

    1.修改本机主机名 vi /etc/sysconfig/network 修改hostname HOSTNAME=s0 2.配置主机映射 vi /etc/hosts 修改内容如下 192.168.32. ...

  3. python之文件操作的初识

    1. 操作文件 1.1 操作的方法 f = open("文件路径",mode="模式",encoding="编码") open() # 调用 ...

  4. Java中线程的通讯

    线程间的相互作用:线程之间需要一些协调通信,来共同完成一件任务. Object类中相关的方法有两个notify方法和三个wait方法:因为wait和notify方法定义在Object类中,因此会被所有 ...

  5. 【转】Qt Socket简单通信

    最近要用到Qt的Socket部分,网上关于这部分的资料都比较复杂,我在这总结一下,把Socket的主要部分提取出来,实现TCP和UDP的简单通信. 1.UDP通信 UDP没有特定的server端和cl ...

  6. c++ 函数指针应用,定义一个方法,传入两个参数和一个函数指针,并返回结果

    #include <iostream> #include <string> using namespace std; double add(double x, double y ...

  7. 在Keras中导入测试数据的方法

    https://blog.csdn.net/ethantequila/article/details/80322425?utm_source=blogxgwz2

  8. JS - Array.prototype.sort(compare)

    function compare(a, b) { return -1; // a 在 b 前面 return 1; // a 在 b 后面 return 0; // 并列排序,保持在源数组中的先后顺序 ...

  9. python中文件操作的其他方法

    前面介绍过Python中文件操作的一般方法,包括打开,写入,关闭.本文中介绍下python中关于文件操作的其他比较常用的一些方法. 首先创建一个文件poems: p=open('poems','r', ...

  10. ProC第一弹

    编译pro*c 的makefile例子 原来只需在makefile中追加include $(ORACLE_HOME)/precomp/lib/env_precomp.mk,其他一切按照makefile ...