题目

HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离。 但

是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回。 又因为HH是个喜欢变化的人,所以他每

天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法。 现在给你学校的地图(假设每条路的长度都

是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径

输入格式

第一行:五个整数N,M,t,A,B。

N表示学校里的路口的个数

M表示学校里的 路的条数

t表示HH想要散步的距离

A表示散步的出发点

B则表示散步的终点。

接下来M行

每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。

数据保证Ai != Bi,但不保证任意两个路口之间至多只有一条路相连接。

路口编号从0到N -1。

同一行内所有数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。

答案模45989。

N ≤ 20,M ≤ 60,t ≤ 2^30,0 ≤ A,B

输出格式

一行,表示答案。

输入样例

4 5 3 0 0

0 1

0 2

0 3

2 1

3 2

输出样例

4

题解

如果没有不能走回头路的限制,这道题就可以用邻接矩阵直接快速幂水过

但是有了这样的限制,我们需要重新考虑

注意到限制是路径中相邻的两个边不能是同一条边,注意到路径中相邻的点本就不会是同一个点

这启发我们可以将边点互换

把每条无向边拆成两条有向边,每条边分别向其指向的点为起点的边连线

这样子求出的邻接矩阵\(G\),\(G^t[i][j]\)就表示从\(i\)开始选出t条连续的边以\(j\)结束的方案数

经过\(t\)个点的路径只有\(t-1\)条边,故只需求出\(G^(t-1)\),然后统计A为起点的边到达B为终点的边的方案数

#include<iostream>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 55,maxm = 125,INF = 1000000000,P = 45989;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
vector<int> ed[maxn];
int n,m,t,S,T,a[maxm],b[maxm];
struct Matrix{
int s[maxm][maxm],n,m;
Matrix(){memset(s,0,sizeof(s)); n = m = 0;}
}G;
Matrix operator *(const Matrix& a,const Matrix b){
Matrix ans;
if (a.m != b.n) return ans;
ans.n = a.n; ans.m = b.m;
for (int i = 0; i < ans.n; i++)
for (int j = 0; j < ans.m; j++)
for (int k = 0; k < a.m; k++)
ans.s[i][j] = (ans.s[i][j] + a.s[i][k] * b.s[k][j] % P) % P;
return ans;
}
Matrix qpow(Matrix a,int b){
Matrix ans; ans.n = ans.m = a.n;
for (int i = 0; i < ans.n; i++) ans.s[i][i] = 1;
for (; b; b >>= 1,a = a * a)
if (b & 1) ans = ans * a;
return ans;
}
int main(){
n = read(); m = read(); t = read(); S = read(); T = read();
G.n = G.m = 2 * m;
int u,v,ans = 0;
for (int i = 0; i < m; i++){
a[i] = u = read(); b[i] = v = read();
ed[u].push_back(i);
ed[v].push_back(i + m);
}
for (int i = 0; i < m; i++){
for (int j = 0; j < ed[b[i]].size(); j++)
if (ed[b[i]][j] != i + m)
G.s[i][ed[b[i]][j]] = 1;
for (int j = 0; j < ed[a[i]].size(); j++)
if (ed[a[i]][j] != i) G.s[i + m][ed[a[i]][j]] = 1;
}
Matrix F = qpow(G,t - 1);
for (int i = 0; i < m; i++){
if (a[i] == S){
for (int j = 0; j < m; j++){
if (b[j] == T) ans = (ans + F.s[i][j]) % P;
if (a[j] == T) ans = (ans + F.s[i][j + m]) % P;
}
}
if (b[i] == S){
for (int j = 0; j < m; j++){
if (b[j] == T) ans = (ans + F.s[i + m][j]) % P;
if (a[j] == T) ans = (ans + F.s[i + m][j + m]) % P;
}
}
}
printf("%d\n",ans);
return 0;
}

BZOJ1875 [SDOI2009]HH去散步 【dp + 矩阵优化】的更多相关文章

  1. [bzoj1875][SDOI2009] HH去散步 [dp+矩阵快速幂]

    题面 传送门 正文 其实就是让你求有多少条长度为t的路径,但是有一个特殊条件:不能走过一条边以后又立刻反着走一次(如果两次经过同意条边中间隔了别的边是可以的) 如果没有这个特殊条件,我们很容易想到dp ...

  2. BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )

    把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 ------------------------------------------------------------------ ...

  3. BZOJ.1875.[SDOI2009]HH去散步(DP 矩阵乘法)

    题目链接 比较容易想到用f[i][j]表示走了i步后到达j点的方案数,但是题目要求不能走上一条走过的边 如果这样表示是不好转移的 可以考虑边,f[i][j]表示走了i步后到达第j条边的方案数,那么有 ...

  4. BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法

    BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...

  5. BZOJ-1875 HH去散步 DP+矩阵乘法快速幂

    1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...

  6. bzoj1875: [SDOI2009]HH去散步

    终于A了...早上按自己以前的写法一直WA.下午换了一种写法就A了qwq #include<cstdio> #include<cstring> #include<iost ...

  7. BZOJ1875 [SDOI2009]HH去散步 矩阵

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1875 题意概括 在一个无向图(有重边无自环)中走,不能在经过连续经过某一条边2次. 现在走t步,问 ...

  8. 【题解】 bzoj1875: [SDOI2009]HH去散步 (动态规划+矩阵乘法)

    bzoj1875,懒得复制,戳我戳我 Solution: 看到这道题,看的出是个dp,每个点\(t\)时刻到达的方案数等于\(t-1\)到连过来的点方案数之和 但又因为题目有要求不能走一样的边回去不是 ...

  9. bzoj1875 [SDOI2009]HH去散步——矩阵快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1875 有个限制是不能走回头路,比较麻烦: 所以把矩阵中的元素设成边的经过次数,单向边之间就好 ...

随机推荐

  1. superset docker 部署

    公众号原文有更多效果图哦 一.使用自己的数据库 1. 拉取项目 // 创建目录用于存放项目 mkdir -p /mnt/superset cd /mnt/superset git clone http ...

  2. MVCPager学习小记

    1.PageIndexParameterName怎么关联? 答:其实就是Action里面的pageindex参数 例子: @Html.Pager(Model, new PagerOptions { P ...

  3. Bootstrap 页面标题(Page Header)

    Bootstrap页面标题(PageHeader)是个不错功能,它会网页的标题的四周添加适当的间距,当一个网页中有多个标题并且每个标题之间需要添加一定适当的间距,使用页面标题是非常有用的.如果需要使用 ...

  4. 【线性基】bzoj2844: albus就是要第一个出场

    线性基求可重rank 题目描述 给定 n 个数 $\{ a_i \}$ ,以及数 $x$. 将 $\{ a_i \}$​ 的所有子集(包括空集)的异或值从小到大排序,得到 $\{ b_i \} $. ...

  5. 转 Spring Security 简介

    https://blog.csdn.net/xlecho/article/details/80026527 Spring Security 简介 2018年04月21日 09:53:02 阅读数:13 ...

  6. kali下安装中文输入法

    参考网址:https://blog.csdn.net/qq_37367124/article/details/79229739 更性源 vim /etc/apt/source.list 设置更新源 更 ...

  7. Oracle rownum的理解

    核心过程分三步: 从表中取出行(无索引的话,顺序取出). 根据当前结果集,为当前行添加rownum. 条件筛选,如通过则添加到结果集中. 完.

  8. Cleaning Shifts POJ - 2376 (贪心题)

    Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 31194   Accepted: 7677 ...

  9. Educational Codeforces Round 41 E. Tufurama (961E)

    [题解] 第一眼看题飞快地想到一种做法,然后假掉了. 这道题其实是主席树的模板题来着.但是也有别的水法. 我们可以发现每个位置的查询区间是[1,min(a[i],i-1)],所以我们可以把查询区间按照 ...

  10. c#中利用“|”运算组合多项

    前几天看到一段代码 int i = GetCount(para1 | para2); 咋一看有些莫名奇妙,怎么传参的时候带了个或运算,其实这里面是有讲究的,查阅了各方资料,QQ群里赖着大牛问,才搞明白 ...