题目

HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离。 但

是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回。 又因为HH是个喜欢变化的人,所以他每

天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法。 现在给你学校的地图(假设每条路的长度都

是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径

输入格式

第一行:五个整数N,M,t,A,B。

N表示学校里的路口的个数

M表示学校里的 路的条数

t表示HH想要散步的距离

A表示散步的出发点

B则表示散步的终点。

接下来M行

每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。

数据保证Ai != Bi,但不保证任意两个路口之间至多只有一条路相连接。

路口编号从0到N -1。

同一行内所有数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。

答案模45989。

N ≤ 20,M ≤ 60,t ≤ 2^30,0 ≤ A,B

输出格式

一行,表示答案。

输入样例

4 5 3 0 0

0 1

0 2

0 3

2 1

3 2

输出样例

4

题解

如果没有不能走回头路的限制,这道题就可以用邻接矩阵直接快速幂水过

但是有了这样的限制,我们需要重新考虑

注意到限制是路径中相邻的两个边不能是同一条边,注意到路径中相邻的点本就不会是同一个点

这启发我们可以将边点互换

把每条无向边拆成两条有向边,每条边分别向其指向的点为起点的边连线

这样子求出的邻接矩阵\(G\),\(G^t[i][j]\)就表示从\(i\)开始选出t条连续的边以\(j\)结束的方案数

经过\(t\)个点的路径只有\(t-1\)条边,故只需求出\(G^(t-1)\),然后统计A为起点的边到达B为终点的边的方案数

#include<iostream>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 55,maxm = 125,INF = 1000000000,P = 45989;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
vector<int> ed[maxn];
int n,m,t,S,T,a[maxm],b[maxm];
struct Matrix{
int s[maxm][maxm],n,m;
Matrix(){memset(s,0,sizeof(s)); n = m = 0;}
}G;
Matrix operator *(const Matrix& a,const Matrix b){
Matrix ans;
if (a.m != b.n) return ans;
ans.n = a.n; ans.m = b.m;
for (int i = 0; i < ans.n; i++)
for (int j = 0; j < ans.m; j++)
for (int k = 0; k < a.m; k++)
ans.s[i][j] = (ans.s[i][j] + a.s[i][k] * b.s[k][j] % P) % P;
return ans;
}
Matrix qpow(Matrix a,int b){
Matrix ans; ans.n = ans.m = a.n;
for (int i = 0; i < ans.n; i++) ans.s[i][i] = 1;
for (; b; b >>= 1,a = a * a)
if (b & 1) ans = ans * a;
return ans;
}
int main(){
n = read(); m = read(); t = read(); S = read(); T = read();
G.n = G.m = 2 * m;
int u,v,ans = 0;
for (int i = 0; i < m; i++){
a[i] = u = read(); b[i] = v = read();
ed[u].push_back(i);
ed[v].push_back(i + m);
}
for (int i = 0; i < m; i++){
for (int j = 0; j < ed[b[i]].size(); j++)
if (ed[b[i]][j] != i + m)
G.s[i][ed[b[i]][j]] = 1;
for (int j = 0; j < ed[a[i]].size(); j++)
if (ed[a[i]][j] != i) G.s[i + m][ed[a[i]][j]] = 1;
}
Matrix F = qpow(G,t - 1);
for (int i = 0; i < m; i++){
if (a[i] == S){
for (int j = 0; j < m; j++){
if (b[j] == T) ans = (ans + F.s[i][j]) % P;
if (a[j] == T) ans = (ans + F.s[i][j + m]) % P;
}
}
if (b[i] == S){
for (int j = 0; j < m; j++){
if (b[j] == T) ans = (ans + F.s[i + m][j]) % P;
if (a[j] == T) ans = (ans + F.s[i + m][j + m]) % P;
}
}
}
printf("%d\n",ans);
return 0;
}

BZOJ1875 [SDOI2009]HH去散步 【dp + 矩阵优化】的更多相关文章

  1. [bzoj1875][SDOI2009] HH去散步 [dp+矩阵快速幂]

    题面 传送门 正文 其实就是让你求有多少条长度为t的路径,但是有一个特殊条件:不能走过一条边以后又立刻反着走一次(如果两次经过同意条边中间隔了别的边是可以的) 如果没有这个特殊条件,我们很容易想到dp ...

  2. BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )

    把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 ------------------------------------------------------------------ ...

  3. BZOJ.1875.[SDOI2009]HH去散步(DP 矩阵乘法)

    题目链接 比较容易想到用f[i][j]表示走了i步后到达j点的方案数,但是题目要求不能走上一条走过的边 如果这样表示是不好转移的 可以考虑边,f[i][j]表示走了i步后到达第j条边的方案数,那么有 ...

  4. BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法

    BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...

  5. BZOJ-1875 HH去散步 DP+矩阵乘法快速幂

    1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...

  6. bzoj1875: [SDOI2009]HH去散步

    终于A了...早上按自己以前的写法一直WA.下午换了一种写法就A了qwq #include<cstdio> #include<cstring> #include<iost ...

  7. BZOJ1875 [SDOI2009]HH去散步 矩阵

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1875 题意概括 在一个无向图(有重边无自环)中走,不能在经过连续经过某一条边2次. 现在走t步,问 ...

  8. 【题解】 bzoj1875: [SDOI2009]HH去散步 (动态规划+矩阵乘法)

    bzoj1875,懒得复制,戳我戳我 Solution: 看到这道题,看的出是个dp,每个点\(t\)时刻到达的方案数等于\(t-1\)到连过来的点方案数之和 但又因为题目有要求不能走一样的边回去不是 ...

  9. bzoj1875 [SDOI2009]HH去散步——矩阵快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1875 有个限制是不能走回头路,比较麻烦: 所以把矩阵中的元素设成边的经过次数,单向边之间就好 ...

随机推荐

  1. ubuntu开放端口

    1.安装iptables(一般情况,ubuntu安装好的时候,iptables会被安装上),使用以下命令: $apt-get update $apt-get install iptables 2.安装 ...

  2. 修改deeplabv3的test的输出的label颜色

    deeplab.py是拿来做test的,其中的postprecess函数中的palette = pascal_palette_invert()是给每个类别加颜色 这个是通过import utils获得 ...

  3. 交叉熵cross entropy和相对熵(kl散度)

    交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异. 相对熵(relativ ...

  4. 用Windows Native API枚举所有句柄及查找文件句柄对应文件名的方法

    枚举所有句柄的方法 由于windows并没有给出枚举所有句柄所用到的API,和进程所拥有的句柄相关的只有GetProcessHandleCount这个函数,然而这个函数只能获取到和进程相关的句柄数,不 ...

  5. 使用 CFile 的子类 CStdioFile 的注意事项

    目前为止只用到了 ReadString,也了解了一下 WriteString. 由于程序需要,本来程序中是用的CFile, 但是需要逐行读取文件数据,所以谷歌找到了 ReadString 类 —— 继 ...

  6. vue 点击下拉框

    data: { hide:false, zhi:"全部" }, <div class="item"> <div class="c2c ...

  7. 头文件string与string.h的区别

    在C++中,#include<iostream>与#include<iostream.h>的区别,前者要使用更新的编译器(其实大部分编译器多比较前卫了,出了有些搞嵌入式的用变态 ...

  8. C++ string头文件

    转载自https://blog.csdn.net/superna666/article/details/52809007/ 作者 zhenzhenjiajia888 标准c++中string类函数介绍 ...

  9. RSA非对称加密算法实现过程

    RSA非对称加密算法实现过程 非对称加密算法有很多,RSA算法就是其中比较出名的算法之一,下面是具体实现过程 <?php /** */ class Rsa { /** * private key ...

  10. 20181205(模块循环导入解决方案,json&pickle模块,time,date,random介绍)

    一.补充内容 循环导入 解决方案: 1.将导入的语句挪到后面. ​ 2.将导入语句放入函数,函数在定义阶段不运行 #m1.pyprint('正在导入m1')   #②能够正常打印from m2 imp ...