Little Artem has invented a time machine! He could go anywhere in time, but all his thoughts of course are with computer science. He wants to apply this time machine to a well-known data structure: multiset.

Artem wants to create a basic multiset of integers. He wants these structure to support operations of three types:

  1. Add integer to the multiset. Note that the difference between set and multiset is that multiset may store several instances of one integer.
  2. Remove integer from the multiset. Only one instance of this integer is removed. Artem doesn't want to handle any exceptions, so he assumes that every time remove operation is called, that integer is presented in the multiset.
  3. Count the number of instances of the given integer that are stored in the multiset.

But what about time machine? Artem doesn't simply apply operations to the multiset one by one, he now travels to different moments of time and apply his operation there. Consider the following example.

  • First Artem adds integer 5 to the multiset at the 1-st moment of time.
  • Then Artem adds integer 3 to the multiset at the moment 5.
  • Then Artem asks how many 5 are there in the multiset at moment 6. The answer is 1.
  • Then Artem returns back in time and asks how many integers 3 are there in the set at moment 4. Since 3 was added only at moment 5, the number of integers 3 at moment 4 equals to 0.
  • Then Artem goes back in time again and removes 5 from the multiset at moment 3.
  • Finally Artyom asks at moment 7 how many integers 5 are there in the set. The result is 0, since we have removed 5 at the moment 3.

Note that Artem dislikes exceptions so much that he assures that after each change he makes all delete operations are applied only to element that is present in the multiset. The answer to the query of the third type is computed at the moment Artem makes the corresponding query and are not affected in any way by future changes he makes.

Help Artem implement time travellers multiset.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 100 000) — the number of Artem's queries.

Then follow n lines with queries descriptions. Each of them contains three integers aiti and xi (1 ≤ ai ≤ 3, 1 ≤ ti, xi ≤ 109) — type of the query, moment of time Artem travels to in order to execute this query and the value of the query itself, respectively. It's guaranteed that all moments of time are distinct and that after each operation is applied all operations of the first and second types are consistent.

Output

For each ask operation output the number of instances of integer being queried at the given moment of time.

Examples

Input
6
1 1 5
3 5 5
1 2 5
3 6 5
2 3 5
3 7 5
Output
1
2
1
Input
3
1 1 1
2 2 1
3 3 1
Output
0

题意:按顺序给定一些操作或者询问。操作:在集合里加元素,删元素,然后有执行时间。 或询问。

思路:3维偏序,第1维:给出的顺序; 第二维:时间; 第三维:大小。

第一维已经排好序了,第二维也可以手动排序,然后搞定第三维。

复杂度O(NlgNlgN),不过跑起来还挺快的。

(看了一下排行榜,也有人用map+树状数组做的,又短又快,强的啊。

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int b[maxn],ans[maxn],num[maxn],cnt,tN;
struct in{ int id,opt,t,x; }s[maxn];
bool cmp1(in w,in v){ return w.t<v.t ;}
bool cmp2(in w,in v){ return w.id<v.id; }
void solve(int L,int R)
{
if(L==R) return ;
int Mid=(L+R)/;
solve(L,Mid);
solve(Mid+,R);
sort(s+L,s+R+,cmp1); //按第二偏序(时间)排序
for(int i=L;i<=R;i++){
if(s[i].id<=Mid){ //如果在左边,则累加对右边的影响
int pos=lower_bound(b+,b+tN+,s[i].x)-b;
if(s[i].opt==) num[pos]++;
if(s[i].opt==) num[pos]--;
}
else { //如果在右边,则累加答案
int pos=lower_bound(b+,b+tN+,s[i].x)-b;
if(s[i].opt==) ans[s[i].id]+=num[pos];
}
}
for(int i=L;i<=R;i++){ //删去左边的标记。
if(s[i].id<=Mid){
int pos=lower_bound(b+,b+tN+,s[i].x)-b;
if(s[i].opt==) num[pos]--;
if(s[i].opt==) num[pos]++;
}
}
sort(s+L,s+R+,cmp2);
}
int main()
{
int N,i,j;
scanf("%d",&N);
for(i=;i<=N;i++) scanf("%d%d%d",&s[i].opt,&s[i].t,&s[i].x);
for(i=;i<=N;i++) s[i].id=i, b[i]=s[i].x;
sort(b+,b+N+);
tN=unique(b+,b+N+)-(b+);
solve(,N);
for(i=;i<=N;i++) if(s[i].opt==) printf("%d\n",ans[i]);
return ;
}

CodeForces669E:Little Artem and Time Machine(CDQ分治)(或者用map+树状数组优美地解决)的更多相关文章

  1. CodeForces 669 E Little Artem and Time Machine CDQ分治

    题目传送门 题意:现在有3种操作, 1 t x 在t秒往multiset里面插入一个x 2 t x 在t秒从multiset里面删除一个x 3 t x 在t秒查询multiset里面有多少x 事情是按 ...

  2. BZOJ3262陌上花开(三维偏序问题(CDQ分治+树状数组))+CDQ分治基本思想

    emmmm我能怎么说呢 CDQ分治显然我没法写一篇完整的优秀的博客,因为我自己还不是很明白... 因为这玩意的思想实在是太短了: fateice如是说道: 如果说对于一道题目的离线操作,假设有n个操作 ...

  3. [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树)

    [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树) 题面 略 分析 首先把一组询问(x,y)看成二维平面上的一个点,我们想办法用数据结构维护这个二维平面(注意根据题意这 ...

  4. BZOJ1176---[Balkan2007]Mokia (CDQ分治 + 树状数组)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1176 CDQ第一题,warush了好久.. CDQ分治推荐论文: 1 <从<C ...

  5. Hdu4742-Pinball Game 3D(cdq分治+树状数组)

    Problem Description RD is a smart boy and excel in pinball game. However, playing common 2D pinball ...

  6. hdu 5126 stars cdq分治套cdq分治+树状数组

    题目链接 给n个操作, 第一种是在x, y, z这个点+1. 第二种询问(x1, y1, z1). (x2, y2, z2)之间的总值. 用一次cdq分治可以将三维变两维, 两次的话就变成一维了, 然 ...

  7. BZOJ 1176: [Balkan2007]Mokia( CDQ分治 + 树状数组 )

    考虑cdq分治, 对于[l, r)递归[l, m), [m, r); 然后计算[l, m)的操作对[m, r)中询问的影响就可以了. 具体就是差分答案+排序+离散化然后树状数组维护.操作数为M的话时间 ...

  8. hdu_4742_Pinball Game 3D(cdq分治+树状数组)

    题目链接:hdu_4742_Pinball Game 3D 题意: 给你n个点,让你求三维的LIS,并且求出有多少种组合能达到LIS. 题解: 求三维的LIS,典型的三维偏序问题,x排序,解决一维,c ...

  9. hdu_5324_Boring Class(cdq分治+树状数组)

    题目链接:hdu_5324_Boring Class 题意: 给出n个二维点对,求LIS长度和编号字典序最小的LIS(x非增,y非减) 题解: dp[i]=max(dp[j]) (i>j,l[i ...

随机推荐

  1. 【转载】Linux下套接字学习

    感觉这个系列还不错,学习一下. 先看的是第三篇: http://blog.csdn.net/gatieme/article/details/46334337 < Linux下套接字详解(三)-- ...

  2. [反汇编练习] 160个CrackMe之036

    [反汇编练习] 160个CrackMe之036. 本系列文章的目的是从一个没有任何经验的新手的角度(其实就是我自己),一步步尝试将160个CrackMe全部破解,如果可以,通过任何方式写出一个类似于注 ...

  3. Lazarus安装使用

    Lazarus安装使用 最后还是安装了Lazarus: 安装之后,新建了项目,还引入了Unit,就可以跑了: 学习:http://tieba.baidu.com/p/3164001113 progra ...

  4. 关于Oracle中sysoper这个系统权限的问题

    我们都知道Oracle数据库安装完之后.默认的会有这样几个系统角色或权限.nomal,sysdba,sysoper等等,之前每次登录Oracle的时候.都是直接以conn / as sysdba 的身 ...

  5. Java序列化算法

    Serialization(序列化)是一种将对象以一连串的字节描述的过程:反序列化deserialization是一种将这些字节重建成一个对象的过程.java序列化API提供一种处理对象序列化的标准机 ...

  6. c语言-递推算法1

    递推算法之一:倒推法 1.一般分析思路: if 求解初始条件F1 then begin { 倒推 } 由题意(或递推关系)确定最终结果Fn; 求出倒推关系式Fi-1 =G(Fi ); i=n; { 从 ...

  7. VS2010/12多核编译

    在工作中,我们的一个完整的项目肯定是由多个个解决方案组成的,我们在调试的时候就会不断的去编译修改过的解决方案,如果当修改的解决方案多了以后我们编译的速度就在很大的程度上决定了我们的工作效率.这时候我们 ...

  8. PHP后台批量删除数据

    html <form action="" method="post"> <div><input type="submit ...

  9. 基于chyh1990/caffe-compact在windows vs2013上编译caffe步骤

    1.      从https://github.com/chyh1990/caffe-compact下载caffe-compact代码: 2.      通过CMake(cmake-gui)生成vs2 ...

  10. WPF触发器(Trigger、DataTrigger、EventTrigger)

    WPF中有种叫做触发器的东西(记住不是数据库的trigger哦).它的主要作用是根据trigger的不同条件来自动更改外观属性,或者执行动画等操作. WPFtrigger的主要类型有:Trigger. ...