ML | Naive Bayes
what's xxx
In machine learning, naive Bayes classifiers are a family of simple probabilistic classifiers based on applying Bayes' theorem with strong (naive) independence assumptions between the features.
Naive Bayes is a popular (baseline) method for text categorization, the problem of judging documents as belonging to one category or the other (such as spam or legitimate, sports or politics, etc.) with word frequencies as the features. With appropriate preprocessing, it is competitive in this domain with more advanced methods including support vector machines.
In simple terms, a naive Bayes classifier assumes that the value of a particular feature is unrelated to the presence or absence of any other feature, given the class variable.
An advantage of naive Bayes is that it only requires a small amount of training data to estimate the parameters (means and variances of the variables) necessary for classification. Because independent variables are assumed, only the variances of the variables for each class need to be determined and not the entire covariance matrix.
Abstractly, the probability model for a classifier is a conditional model
$p(C \vert F_1,\dots,F_n)\,$
over a dependent class variable C with a small number of outcomes or classes, conditional on several feature variables $F_1$ through $F_n$. The problem is that if the number of features n is large or if a feature can take on a large number of values, then basing such a model on probability tables is infeasible. We therefore reformulate the model to make it more tractable.
Using Bayes' theorem, this can be written
$p(C \vert F_1,\dots,F_n) = \frac{p(C) \ p(F_1,\dots,F_n\vert C)}{p(F_1,\dots,F_n)}. \,$
In plain English, using Bayesian Probability terminology, the above equation can be written as
$\mbox{posterior} = \frac{\mbox{prior} \times \mbox{likelihood}}{\mbox{evidence}}. \,$
$\begin{align}
p(C, F_1, \dots, F_n) & = p(C) \ p(F_1,\dots,F_n\vert C) \\
& = p(C) \ p(F_1\vert C) \ p(F_2,\dots,F_n\vert C, F_1) \\
& = p(C) \ p(F_1\vert C) \ p(F_2\vert C, F_1) \ p(F_3,\dots,F_n\vert C, F_1, F_2) \\
& = p(C) \ p(F_1\vert C) \ p(F_2\vert C, F_1) \ p(F_3\vert C, F_1, F_2) \ p(F_4,\dots,F_n\vert C, F_1, F_2, F_3) \\
& = p(C) \ p(F_1\vert C) \ p(F_2\vert C, F_1) \ \dots p(F_n\vert C, F_1, F_2, F_3,\dots,F_{n-1})
\end{align}$
Now the "naive" conditional independence assumptions come into play: assume that each feature $F_i$ is conditionally independent of every other feature $F_j$ for $j\neq i$ given the category C. This means that
$p(F_i \vert C, F_j) = p(F_i \vert C)\,,
p(F_i \vert C, F_j,F_k) = p(F_i \vert C)\,,
p(F_i \vert C, F_j,F_k,F_l) = p(F_i \vert C)\,,$
and so on, for $i\ne j,k,l$. Thus, the joint model can be expressed as
$\begin{align}
p(C \vert F_1, \dots, F_n) & \varpropto p(C, F_1, \dots, F_n) \\
& \varpropto p(C) \ p(F_1\vert C) \ p(F_2\vert C) \ p(F_3\vert C) \ \cdots \\
& \varpropto p(C) \prod_{i=1}^n p(F_i \vert C)\,.
\end{align}$
This means that under the above independence assumptions, the conditional distribution over the class variable C is:
$p(C \vert F_1,\dots,F_n) = \frac{1}{Z} p(C) \prod_{i=1}^n p(F_i \vert C)$
where the evidence $Z = p(F_1, \dots, F_n)$ is a scaling factor dependent only on $F_1,\dots,F_n$, that is, a constant if the values of the feature variables are known.
One common rule is to pick the hypothesis that is most probable; this is known as the maximum a posteriori or MAP decision rule. The corresponding classifier, a Bayes classifier, is the function $\mathrm{classify}$ defined as follows:
$\mathrm{classify}(f_1,\dots,f_n) = \underset{c}{\operatorname{argmax}} \ p(C=c) \displaystyle\prod_{i=1}^n p(F_i=f_i\vert C=c).$
All model parameters (i.e., class priors and feature probability distributions) can be approximated with relative frequencies from the training set. These are maximum likelihood estimates of the probabilities. A class' prior may be calculated by assuming equiprobable classes (i.e., priors = 1 / (number of classes)), or by calculating an estimate for the class probability from the training set (i.e., (prior for a given class) = (number of samples in the class) / (total number of samples)). To estimate the parameters for a feature's distribution, one must assume a distribution or generate nonparametric models for the features from the training set.
Algorithm
1. 计算先验概率,class priors and feature probability distributions; $p(C)$和$Z = p(F_1, \dots, F_n)$
2. 不同特征要假设一个概率分布;$p(F_i \vert C)$;
When dealing with continuous data, a typical assumption is that the continuous values associated with each class are distributed according to a Gaussian distribution.
Another common technique for handling continuous values is to use binning to discretize the feature values, to obtain a new set of Bernoulli-distributed features.
In general, the distribution method is a better choice if there is a small amount of training data, or if the precise distribution of the data is known. The discretization method tends to do better if there is a large amount of training data because it will learn to fit the distribution of the data. Since naive Bayes is typically used when a large amount of data is available (as more computationally expensive models can generally achieve better accuracy), the discretization method is generally preferred over the distribution method.
3. 计算成为每个类的概率,取概率最大的类;
ML | Naive Bayes的更多相关文章
- [ML] Naive Bayes for Text Classification
TF-IDF Algorithm From http://www.ruanyifeng.com/blog/2013/03/tf-idf.html Chapter 1, 知道了"词频" ...
- [ML] Naive Bayes for email classification
20 Newsgroups (Original) Author: Jeffrey H 1. Introduction This is only a test report for naive baye ...
- [Scikit-learn] 1.9 Naive Bayes
Ref: http://scikit-learn.org/stable/modules/naive_bayes.html 1.9.1. Gaussian Naive Bayes 原理可参考:统计学习笔 ...
- Naive Bayes Theorem and Application - Theorem
Naive Bayes Theorm And Application - Theorem Naive Bayes model: 1. Naive Bayes model 2. model: discr ...
- 【十大算法实现之naive bayes】朴素贝叶斯算法之文本分类算法的理解与实现
关于bayes的基础知识,请参考: 基于朴素贝叶斯分类器的文本聚类算法 (上) http://www.cnblogs.com/phinecos/archive/2008/10/21/1315948.h ...
- MLLib实践Naive Bayes
引言 本文基于Spark (1.5.0) ml库提供的pipeline完整地实践一次文本分类.pipeline将串联单词分割(tokenize).单词频数统计(TF),特征向量计算(TF-IDF),朴 ...
- 基于Naive Bayes算法的文本分类
理论 什么是朴素贝叶斯算法? 朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关.举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果 ...
- 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)
在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...
- [Machine Learning & Algorithm] 朴素贝叶斯算法(Naive Bayes)
生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法. 一.病人分类的例子 让我从一个例子 ...
随机推荐
- MySQL如何复制一个表
MySQL如何复制一个表 1 复制 employee 表 => employee2 () create table employee2 like employee () insert into ...
- Anaconda的安装、使用以及与PyCharm的链接
初学Python的盆友们是否有这样的疑惑: 选择Python2还是Python3呢?(后者并不完全兼容前者) 听说两者可以同时安装,那怎么管理呢? Python那么丰富的第三方库,一个一个装太麻烦啦 ...
- (转)iOS平台UDID方案比较
苹果在iOS6中禁用了[UIDevice uniqueIdentifier],在iOS7中又把mac地址的获取给堵上了.没办法,毕竟人家是老大,说不让你用,你也没办法. 在这边总结一下现有的一部分 ...
- C语言高效编程的几招,你会了几招了?
编写高效简洁的C 语言代码,是许多软件工程师追求的目标.本文就工作中的一些体会和经验做相关的阐述,不对的地方请各位指教. 第1 招:以空间换时间 计算机程序中最大的矛盾是空间和时间的矛盾,那么,从这个 ...
- hbase问题总结
一.客户端访问hbase时出现no further information 使用java api访问hbase时,一直连不上,查看日志发现以下错误: java.net.ConnectException ...
- python 提交form-data之坑
#coding=utf-8 import requests from requests_toolbelt import MultipartEncoder #requests库上传 files = {& ...
- JS实现——用3L和5L量出4L的水
把以下代码保存成donglanguage.html文件,使用Google或360浏览器打开 <!DOCTYPE html> <html> <head> <me ...
- Html开发小结
html部分 1.html标签 标签不区分大小写. 如:<!doctype html>与<!DOCTYPE html > <div></div>与< ...
- .Net程序员自学dump分析教程
文章:.Net程序员自学dump分析教程 可以分析内存状态.
- 【Kubernetes】The connection to the server <master>:6443 was refused - did you specify the right host or port?
不知道怎么用着用着,使用kubectl 时报错,错误如下: root@R740--:~# kubectl get pod The connection to the server 107.105.13 ...