ML | Naive Bayes
what's xxx
In machine learning, naive Bayes classifiers are a family of simple probabilistic classifiers based on applying Bayes' theorem with strong (naive) independence assumptions between the features.
Naive Bayes is a popular (baseline) method for text categorization, the problem of judging documents as belonging to one category or the other (such as spam or legitimate, sports or politics, etc.) with word frequencies as the features. With appropriate preprocessing, it is competitive in this domain with more advanced methods including support vector machines.
In simple terms, a naive Bayes classifier assumes that the value of a particular feature is unrelated to the presence or absence of any other feature, given the class variable.
An advantage of naive Bayes is that it only requires a small amount of training data to estimate the parameters (means and variances of the variables) necessary for classification. Because independent variables are assumed, only the variances of the variables for each class need to be determined and not the entire covariance matrix.
Abstractly, the probability model for a classifier is a conditional model
$p(C \vert F_1,\dots,F_n)\,$
over a dependent class variable C with a small number of outcomes or classes, conditional on several feature variables $F_1$ through $F_n$. The problem is that if the number of features n is large or if a feature can take on a large number of values, then basing such a model on probability tables is infeasible. We therefore reformulate the model to make it more tractable.
Using Bayes' theorem, this can be written
$p(C \vert F_1,\dots,F_n) = \frac{p(C) \ p(F_1,\dots,F_n\vert C)}{p(F_1,\dots,F_n)}. \,$
In plain English, using Bayesian Probability terminology, the above equation can be written as
$\mbox{posterior} = \frac{\mbox{prior} \times \mbox{likelihood}}{\mbox{evidence}}. \,$
$\begin{align}
p(C, F_1, \dots, F_n) & = p(C) \ p(F_1,\dots,F_n\vert C) \\
& = p(C) \ p(F_1\vert C) \ p(F_2,\dots,F_n\vert C, F_1) \\
& = p(C) \ p(F_1\vert C) \ p(F_2\vert C, F_1) \ p(F_3,\dots,F_n\vert C, F_1, F_2) \\
& = p(C) \ p(F_1\vert C) \ p(F_2\vert C, F_1) \ p(F_3\vert C, F_1, F_2) \ p(F_4,\dots,F_n\vert C, F_1, F_2, F_3) \\
& = p(C) \ p(F_1\vert C) \ p(F_2\vert C, F_1) \ \dots p(F_n\vert C, F_1, F_2, F_3,\dots,F_{n-1})
\end{align}$
Now the "naive" conditional independence assumptions come into play: assume that each feature $F_i$ is conditionally independent of every other feature $F_j$ for $j\neq i$ given the category C. This means that
$p(F_i \vert C, F_j) = p(F_i \vert C)\,,
p(F_i \vert C, F_j,F_k) = p(F_i \vert C)\,,
p(F_i \vert C, F_j,F_k,F_l) = p(F_i \vert C)\,,$
and so on, for $i\ne j,k,l$. Thus, the joint model can be expressed as
$\begin{align}
p(C \vert F_1, \dots, F_n) & \varpropto p(C, F_1, \dots, F_n) \\
& \varpropto p(C) \ p(F_1\vert C) \ p(F_2\vert C) \ p(F_3\vert C) \ \cdots \\
& \varpropto p(C) \prod_{i=1}^n p(F_i \vert C)\,.
\end{align}$
This means that under the above independence assumptions, the conditional distribution over the class variable C is:
$p(C \vert F_1,\dots,F_n) = \frac{1}{Z} p(C) \prod_{i=1}^n p(F_i \vert C)$
where the evidence $Z = p(F_1, \dots, F_n)$ is a scaling factor dependent only on $F_1,\dots,F_n$, that is, a constant if the values of the feature variables are known.
One common rule is to pick the hypothesis that is most probable; this is known as the maximum a posteriori or MAP decision rule. The corresponding classifier, a Bayes classifier, is the function $\mathrm{classify}$ defined as follows:
$\mathrm{classify}(f_1,\dots,f_n) = \underset{c}{\operatorname{argmax}} \ p(C=c) \displaystyle\prod_{i=1}^n p(F_i=f_i\vert C=c).$
All model parameters (i.e., class priors and feature probability distributions) can be approximated with relative frequencies from the training set. These are maximum likelihood estimates of the probabilities. A class' prior may be calculated by assuming equiprobable classes (i.e., priors = 1 / (number of classes)), or by calculating an estimate for the class probability from the training set (i.e., (prior for a given class) = (number of samples in the class) / (total number of samples)). To estimate the parameters for a feature's distribution, one must assume a distribution or generate nonparametric models for the features from the training set.
Algorithm
1. 计算先验概率,class priors and feature probability distributions; $p(C)$和$Z = p(F_1, \dots, F_n)$
2. 不同特征要假设一个概率分布;$p(F_i \vert C)$;
When dealing with continuous data, a typical assumption is that the continuous values associated with each class are distributed according to a Gaussian distribution.
Another common technique for handling continuous values is to use binning to discretize the feature values, to obtain a new set of Bernoulli-distributed features.
In general, the distribution method is a better choice if there is a small amount of training data, or if the precise distribution of the data is known. The discretization method tends to do better if there is a large amount of training data because it will learn to fit the distribution of the data. Since naive Bayes is typically used when a large amount of data is available (as more computationally expensive models can generally achieve better accuracy), the discretization method is generally preferred over the distribution method.
3. 计算成为每个类的概率,取概率最大的类;
ML | Naive Bayes的更多相关文章
- [ML] Naive Bayes for Text Classification
TF-IDF Algorithm From http://www.ruanyifeng.com/blog/2013/03/tf-idf.html Chapter 1, 知道了"词频" ...
- [ML] Naive Bayes for email classification
20 Newsgroups (Original) Author: Jeffrey H 1. Introduction This is only a test report for naive baye ...
- [Scikit-learn] 1.9 Naive Bayes
Ref: http://scikit-learn.org/stable/modules/naive_bayes.html 1.9.1. Gaussian Naive Bayes 原理可参考:统计学习笔 ...
- Naive Bayes Theorem and Application - Theorem
Naive Bayes Theorm And Application - Theorem Naive Bayes model: 1. Naive Bayes model 2. model: discr ...
- 【十大算法实现之naive bayes】朴素贝叶斯算法之文本分类算法的理解与实现
关于bayes的基础知识,请参考: 基于朴素贝叶斯分类器的文本聚类算法 (上) http://www.cnblogs.com/phinecos/archive/2008/10/21/1315948.h ...
- MLLib实践Naive Bayes
引言 本文基于Spark (1.5.0) ml库提供的pipeline完整地实践一次文本分类.pipeline将串联单词分割(tokenize).单词频数统计(TF),特征向量计算(TF-IDF),朴 ...
- 基于Naive Bayes算法的文本分类
理论 什么是朴素贝叶斯算法? 朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关.举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果 ...
- 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)
在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...
- [Machine Learning & Algorithm] 朴素贝叶斯算法(Naive Bayes)
生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法. 一.病人分类的例子 让我从一个例子 ...
随机推荐
- Kafka 基础实战 :消费者和生产者实例
学习地址: http://www.jikexueyuan.com/course/2036.html
- 流程控制之while循环for循环
流程控制之while循环1.什么是循环 循环就是重复做某件事2.为什么要有循环 为了让计算机能够具备人重复做某件事的能力3.如何用循环 while语法: while 条件: code1 code2 c ...
- python爬虫基础12-selenium大全6/8-等待
Selenium笔记(6)等待 本文集链接:https://www.jianshu.com/nb/25338984 简介 在selenium操作浏览器的过程中,每一次请求url,selenium都会等 ...
- day12-迭代器
迭代器的概念 内部含有_next_和_iter_方法的就是迭代器. 可以被for循环的都是可迭代的,只有是可迭代对象,才能用for循环. 可迭代的内部都有_iter_方法——可迭代协议. 只要是迭代器 ...
- HTTP认证之基本认证——Basic(二)
导航 HTTP认证之基本认证--Basic(一) HTTP认证之基本认证--Basic(二) HTTP认证之摘要认证--Digest(一) HTTP认证之摘要认证--Digest(二) 在HTTP认证 ...
- jmeter中基于oracle的JDBC Request的使用
前提条件: 1.有数据库:2.数据库中有表,例如testuser(userid,username,usepwd): 设置如下: 参考自:http://www.linuxidc.com/Linux/20 ...
- POJ 3469 最小割 Dual Core CPU
题意: 一个双核CPU上运行N个模块,每个模块在两个核上运行的费用分别为Ai和Bi. 同时,有M对模块需要进行数据交换,如果这两个模块不在同一个核上运行需要额外花费. 求运行N个模块的最小费用. 分析 ...
- JSON Undefined 问题
在IE6和IE7浏览器下或在IE8-IE10浏览器文档模式为IE7及以下时,控制台会报错:JSON is undefined. 这种错误在IE6和IE7浏览器下出现很正常,因为JSON在IE8+浏览器 ...
- day03_01 Python历史、32bit和64bit系统的区别
先看一下讲师的笔记,有python介绍 在python2.6版本之后,想清理一些东西,追求简单明了,就直接升级到了python3.0 但是python3.0导致很多企业都不更新,因为有很多企业的网站代 ...
- R语言采坑系列——Warning message: In validDetails.polygon(x) : 强制改变过程中产生了NA
用ggplot2的geom_density_2d时,总是不能填充图案,并报错: Warning message: In validDetails.polygon(x) : 强制改变过程中产生了NA 解 ...