Discription
Given a permutation a1, a2, … aN of {1, 2, …, N}, we define its E-value as the amount of elements where ai > i. For example, the E-value of permutation {1, 3, 2, 4} is 1, while the E-value of {4, 3, 2, 1} is 2. You are requested to find how many permutations of {1, 2, …, N} whose E-value is exactly k.

Input

There are several test cases, and one line for each case, which contains two integers, N and k. (1 <= N <= 1000, 0 <= k <= N). 
Output

Output one line for each case. For the answer may be quite huge, you need to output the answer module 1,000,000,007.

Sample Input

3 0
3 1

Sample Output

1
4

Hint

There is only one permutation with E-value 0: {1,2,3}, and there are four permutations with E-value 1: {1,3,2}, {2,1,3}, {3,1,2}, {3,2,1}

    套路题。
先用dp求出f[i] 为至少有i对满足关系的排列数,然后再二项式反演一下就好啦。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int ha=1000000007;
const int maxn=1000;
int jc[maxn+5],ni[maxn+5],n,k,f[maxn+5];
inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x;}
inline int ksm(int x,int y){ int an=1; for(;y;y>>=1,x=x*(ll)x%ha) if(y&1) an=an*(ll)x%ha; return an;}
inline int getC(int x,int y){ return x<y?0:jc[x]*(ll)ni[y]%ha*(ll)ni[x-y]%ha;} inline void init(){
jc[0]=1;
for(int i=1;i<=maxn;i++) jc[i]=jc[i-1]*(ll)i%ha;
ni[maxn]=ksm(jc[maxn],ha-2);
for(int i=maxn;i;i--) ni[i-1]=ni[i]*(ll)i%ha;
} inline void solve(){
memset(f,0,sizeof(f)); f[0]=1;
for(int i=n;i;i--)
for(int j=n-i;j>=0;j--) f[j+1]=add(f[j+1],f[j]*(ll)(n-i-j)%ha);
for(int i=0;i<=n;i++) f[i]=f[i]*(ll)jc[n-i]%ha; int ans=0;
for(int i=k;i<=n;i++)
if((i-k)&1) ans=add(ans,ha-getC(i,k)*(ll)f[i]%ha);
else ans=add(ans,getC(i,k)*(ll)f[i]%ha);
printf("%d\n",ans);
} int main(){
init();
while(scanf("%d%d",&n,&k)==2) solve();
return 0;
}

  

        

HDU - 3664 Permutation Counting的更多相关文章

  1. hdu 3664 Permutation Counting(水DP)

    Permutation Counting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. HDU - 3664 Permutation Counting 排列规律dp

    Permutation Counting Given a permutation a1, a2, … aN of {1, 2, …, N}, we define its E-value as the ...

  3. HDU 3664 Permutation Counting (DP)

    题意:给一个 n,求在 n 的所有排列中,恰好有 k 个数a[i] > i 的个数. 析:很明显是DP,搞了好久才搞出来,觉得自己DP,实在是太low了,思路是这样的. dp[i][j]表示 i ...

  4. HDU 6880 Permutation Counting dp

    题意: 给你一个n和一个长度为n-1的由0/1构成的b序列 你需要从[1,n]中构造出来一个满足b序列的序列 我们设使用[1,n]构成的序列为a,那么如果ai>ai+1,那么bi=1,否则bi= ...

  5. HDU3664 Permutation Counting

    Permutation Counting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  6. Hdu 5439 Aggregated Counting (2015长春网络赛 ACM/ICPC Asia Regional Changchun Online 找规律)

    题目链接: Hdu 5439 Aggregated Counting 题目描述: 刚开始给一个1,序列a是由a[i]个i组成,最后1就变成了1,2,2,3,3,4,4,4,5,5,5.......,最 ...

  7. hdu3664 Permutation Counting(dp)

    hdu3664 Permutation Counting 题目传送门 题意: 在一个序列中,如果有k个数满足a[i]>i:那么这个序列的E值为k,问你 在n的全排列中,有多少个排列是恰好是E值为 ...

  8. HDU 4358 Boring counting(莫队+DFS序+离散化)

    Boring counting Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 98304/98304 K (Java/Others) ...

  9. 后缀数组 --- HDU 3518 Boring counting

    Boring counting Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=3518 Mean: 给你一个字符串,求:至少出 ...

随机推荐

  1. Restful API 概念解析

    什么是restful? REST与技术无关,代表的是一种软件架构风格,REST是Representational State Transfer的简称,中文翻译为“表征状态转移”或“表现层状态转化”. ...

  2. python基础-面向对象的三大特征

    继承 单继承 父类 基类 子类 派生类 继承:是面向对象软件技术当中的一个概念,如果一个类别A“继承自”另一个类别B,就把这个A称为“B的子类别”,而把B称为“A的父类别”也可以称“B是A的超类”. ...

  3. Python之路--序列化

    序列化的目的 1.以某种存储形式使自定义对象持久化 2.将对象从一个地方传递到另一个地方 3.使程序更具有维护性 json json多语言通用 四个功能:dumps.dump.loads.load # ...

  4. LeetCode(203) Remove LinkedList Elements

    题目 Remove all elements from a linked list of integers that have value val. Example Given: 1 –> 2 ...

  5. Linux学习-灾难复原的考虑

    硬件损毁,且具有完整备份的数据时 由于是硬件损毁,所以我们不需要考虑系统软件的不稳定问题,所以可以直接将完整的系统复原回去 即可. 由于软件的问题产生的被攻破资安事件 由于系统的损毁是因为被攻击,此时 ...

  6. linux+ARM学习路线

    学习步骤如下: 1.Linux 基础 安装Linux操作系统 Linux文件系统 Linux常用命令 Linux启动过程详解 熟悉Linux服务能够独立安装Linux操作系统 能够熟练使用Linux系 ...

  7. HDU 5044 Tree LCA

    题意: 给出一棵\(n(1 \leq n \leq 10^5)\)个节点的树,每条边和每个点都有一个权值,初始所有权值为0. 有两种操作: \(ADD1 \, u \, v \, k\):将路径\(u ...

  8. Selenium WebDriver- 操作JavaScript的Alert弹窗

    弹层和弹框是有区别的,弹框是那种完全没样式的框子:弹层是可以直接看到html的,有样式 #encoding=utf-8 import unittest import time from seleniu ...

  9. Nginx从入门到放弃-第4章 深度学习篇

    4-1 Nginx动静分离_动静分离场景演示 4-2 Nginx动静分离_动静分离场景演示1 4-3 Nginx的动静分离_动静分离场景演示2 4-4 Rewrite规则_rewrite规则的作用 4 ...

  10. 聊聊、Spring 第一篇

    Spring 大家都不陌生,企业应用中很流行的一个平台.从最开始的 Servlet 控制所有,到 MVC 模式的出现.从 SSH (Struts.Spring.Hibernate) 所谓的三剑客 到 ...