BZOJ-1833(数位DP)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a,b;
int k[20];
ll dp[20][10];
ll sum[20];
ll ddfs(int pos,int lead,bool limit){
if(pos == -1)return 1;
if(!limit && !lead && sum[pos])return sum[pos];
int up = limit ? k[pos]:9;
ll res = 0;
for(int i=0;i<=up;i++){
res += ddfs(pos-1,lead && i==0,limit && i == k[pos]);
}
if(!limit && !lead)sum[pos] = res;
return res;
}
ll dfs(int pos,int x,bool lead,bool limit){
if(pos == -1)return lead;
if(!limit && !lead && dp[pos][x])return dp[pos][x];
int up = limit ? k[pos] : 9;
ll res = 0;
for(int i=0;i<=up;i++){
if(lead){
if(i == 0){
res += dfs(pos-1,x,lead,false);continue;
}
}
if(i == x){
res += ddfs(pos-1,false,limit && i == k[pos]);
res += dfs(pos-1,x,false,limit && i == k[pos]);
}
else res += dfs(pos-1,x,false,limit && i == k[pos]);
}
if(!limit && !lead)dp[pos][x] = res;
return res;
}
ll solve(ll x,int z){
int pos = 0;
while(x){
k[pos++] = x%10;
x/=10;
}
return dfs(pos-1,z,true,true);
}
int main(){
scanf("%lld%lld",&a,&b);
for(int i=0;i<=9;i++){
printf("%lld ",solve(b,i) - solve(a-1,i));
}
//printf("%lld\n",dp[0][1]);
puts("");
return 0;
}
BZOJ-1833(数位DP)的更多相关文章
- bzoj 1833 数位dp
很裸的数位dp. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #defi ...
- bzoj 3668 数位DP
收获: 1.如果有很多位操作,并且不包含+-×/等高级运算,那么可以一位一位考虑,如果求一个最优解,可以尝试逐位确定,这道题因为原始攻击值有范围,那么就需要数位DP. /*************** ...
- bzoj 3209 数位DP+欧拉定理
枚举1的个数,统计有那么多1的数的个数 /************************************************************** Problem: 3209 Us ...
- BZOJ - 1026 数位DP
中文题面,注意st是不可以放到dp里面的,否则每次solve都要清零 注意状态的转移要st&&i==0,因为子结构也可能是st(当高位取0时) 而st是必然合法的 #include&l ...
- BZOJ 3679 数位DP
思路: f[i][j]表示i位数乘积为j的方案数 j的取值最多5000多种,那就开个map存一下好了 f[i][mp[k*rec[j]]]+=f[i-1][j]; //By SiriusRen #in ...
- BZOJ 3209 数位DP
思路: 先预处理出来组合数 按位做 枚举sum[x]是多少 注意Mod不是一个质数 //By SiriusRen #include <cstdio> using namespace std ...
- [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】
题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...
- BZOJ 1833 数字计数 数位DP
题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有 ...
- 【BZOJ】1833: [ZJOI2010] count 数字计数(数位dp)
题目 传送门:QWQ 分析 蒟蒻不会数位dp,又是现学的 用$ dp[i][j][k] $ 表示表示长度为i开头j的所有数字中k的个数 然后预处理出这个数组,再计算答案 代码 #include < ...
- bzoj 1833: [ZJOI2010]count 数字计数【数位dp】
非典型数位dp 先预处理出f[i][j][k]表示从后往前第i位为j时k的个数,然后把答案转换为ans(r)-ans(l-1),用预处理出的f数组dp出f即可(可能也不是dp吧--) #include ...
随机推荐
- Vue2中实现微信分享支付功能
Vue2中实现微信分享支付功能 近期做了一个微信公众号前后分离项目,前端采用Vue2开发,后端SpringBoot,今天迫不及待的来给大家分享一下这次在开发中遇到的一些坑以及解决办法. 在这里,一些 ...
- es6入门5--class类的基本用法
在ES6之前,准确来说JavaScript语言并无类的概念,却有模拟类的做法.相比在类似java这类传统面向对象语言中通过类来生成实例,js则通过构造函数模拟类来生成实例. 这是因为在JS设计初期,作 ...
- 通俗理解 React 高阶函数
定义:高阶组件就是一个函数,且该函数接受一个组件作为参数,并返回一个新的组件. A higher-order component is a function that takes a componen ...
- SpringBoot配置属性二
server配置 server.address指定server绑定的地址 server.compression.enabled是否开启压缩,默认为false. server.compression.e ...
- [Android]四大组件的运行状态
Activity的主要作用是展示一个界面并和用户交互,它扮演的是一种前台界面的角色. Service是一种计算型组件,用于在后台执行一系列计算任务.Service有两种状态:启动状态和绑定状态.启动状 ...
- codechef FIBTREE 码农题 线段树 树剖 标记永久化
好烦啊,调了半天 线段树部分标记比较多,手抖打错了一个 剩下的都是取模的问题 我自己瞎jb推的公式里保留了abs,但是在模意义下是gg的,所以必须把正负区分开 调试的时候一定要注意构造各种形状的树,不 ...
- namedJDBC查询
import java.util.ArrayList; import java.util.List; import org.apache.log4j.Logger; import org.spring ...
- 物体检测丨从R-CNN到Mask R-CNN
这篇blog是我刚入目标检测方向,导师发给我的文献导读,深入浅出总结了object detection two-stage流派Faster R-CNN的发展史,读起来非常有趣.我一直想翻译这篇博客,在 ...
- 【转】LINQ to SQL语句(1)之Where
Where操作 适用场景:实现过滤,查询等功能. 说明:与SQL命令中的Where作用相似,都是起到范围限定也就是过滤作用的,而判断条件就是它后面所接的子句. Where操作包括3种形式,分别为简单形 ...
- js中Object.defineProperty()和defineProperties()
在介绍js中Object.defineProperty()和defineProperties()之前,我们了解下js中对象两种属性的类型:数据属性和访问器属性. 数据属性 数据属性包含一个数据的位置, ...