The Dataset was acquired from https://www.kaggle.com/c/titanic

For data preprocessing, I firstly defined three transformers:

  • DataFrameSelector: Select features to handle.
  • CombinedAttributesAdder: Add a categorical feature Age_cat which divided all passengers into three catagories according to their ages.
  • ImputeMostFrequent: Since the SimpleImputer( ) method was only suitable for numerical variables, I wrote an transformer to impute string missing values with the mode value. Here I was inspired by https://stackoverflow.com/questions/25239958/impute-categorical-missing-values-in-scikit-learn.

Then I wrote pipelines separately for different features

  • For numerical features, I applied DataFrameSelector, SimpleImputer and StandardScaler
  • For categorical features, I applied DataFrameSelector, ImputeMostFrequent and OneHotEncoder
  • For the new created feature Age_cat, since itself was a category but was derived from a numerical feature, I wrote an individual pipeline to impute the missing values and encode the categories.

Finally, we can build a full pipeline through FeatureUnion. Here is the code:

 # Read data
import pandas as pd
import numpy as np
import os
titanic_train = pd.read_csv('Dataset/Titanic/train.csv')
titanic_test = pd.read_csv('Dataset/Titanic/test.csv')
submission = pd.read_csv('Dataset/Titanic/gender_submission.csv') # Divide attributes and labels
titanic_labels = titanic_train['Survived'].copy()
titanic = titanic_train.drop(['Survived'],axis=1) # Feature Selection
from sklearn.base import BaseEstimator, TransformerMixin class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self,attribute_name):
self.attribute_name = attribute_name
def fit(self, X):
return self
def transform (self, X, y=None):
if 'Pclass' in self.attribute_name:
X['Pclass'] = X['Pclass'].astype(str)
return X[self.attribute_name] # Feature Creation
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
return self # nothing else to do
def transform(self, X, y=None):
Age_cat = pd.cut(X['Age'],[0,18,60,100],labels=['child', 'adult', 'old'])
Age_cat=np.array(Age_cat)
return pd.DataFrame(Age_cat,columns=['Age_Cat']) # Impute Categorical variables
class ImputeMostFrequent(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
self.fill = pd.Series([X[c].value_counts().index[0] for c in X],index=X.columns)
return self
def transform(self, X, y=None):
return X.fillna(self.fill) #Pipeline
from sklearn.impute import SimpleImputer # Scikit-Learn 0.20+
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder
from sklearn.pipeline import FeatureUnion num_pipeline = Pipeline([
('selector',DataFrameSelector(['Age','SibSp','Parch','Fare'])),
('imputer', SimpleImputer(strategy="median")),
('std_scaler', StandardScaler()),
]) cat_pipeline = Pipeline([
('selector',DataFrameSelector(['Pclass','Sex','Embarked'])),
('imputer',ImputeMostFrequent()),
('encoder', OneHotEncoder()),
]) new_pipeline = Pipeline([
('selector',DataFrameSelector(['Age'])),
#('imputer', SimpleImputer(strategy="median")),
('attr_adder',CombinedAttributesAdder()),
('imputer',ImputeMostFrequent()),
('encoder', OneHotEncoder()),
]) full_pipeline = FeatureUnion([
("num", num_pipeline),
("cat", cat_pipeline),
("new", new_pipeline),
]) titanic_prepared = full_pipeline.fit_transform(titanic)

Another thing I want to mention is that the output of a pipeline should be a 2D array rather a 1D array. So if you wanna choose only one feature, don't forget to transform the 1D array by reshape() method. Otherwise, you will receive an error like

ValueError: Expected 2D array, got 1D array instead

Specifically, apply reshape(-1,1) for column and reshape(1,-1). More about the issue can be found at https://stackoverflow.com/questions/51150153/valueerror-expected-2d-array-got-1d-array-instead.


												

[Machine Learning with Python] My First Data Preprocessing Pipeline with Titanic Dataset的更多相关文章

  1. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  2. 《Learning scikit-learn Machine Learning in Python》chapter1

    前言 由于实验原因,准备入坑 python 机器学习,而 python 机器学习常用的包就是 scikit-learn ,准备先了解一下这个工具.在这里搜了有 scikit-learn 关键字的书,找 ...

  3. Python (1) - 7 Steps to Mastering Machine Learning With Python

    Step 1: Basic Python Skills install Anacondaincluding numpy, scikit-learn, and matplotlib Step 2: Fo ...

  4. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  5. Machine Learning的Python环境设置

    Machine Learning目前经常使用的语言有Python.R和MATLAB.如果采用Python,需要安装大量的数学相关和Machine Learning的包.一般安装Anaconda,可以把 ...

  6. [Machine Learning with Python] Data Preparation through Transformation Pipeline

    In the former article "Data Preparation by Pandas and Scikit-Learn", we discussed about a ...

  7. [Machine Learning with Python] Data Preparation by Pandas and Scikit-Learn

    In this article, we dicuss some main steps in data preparation. Drop Labels Firstly, we drop labels ...

  8. [Machine Learning with Python] Familiar with Your Data

    Here I list some useful functions in Python to get familiar with your data. As an example, we load a ...

  9. [Machine Learning with Python] How to get your data?

    Using Pandas Library The simplest way is to read data from .csv files and store it as a data frame o ...

随机推荐

  1. jvm探秘之三:GC初步

    GC即垃圾收集器,虚拟机的必要组成部分. 不过这里说当然是,hotspot虚拟机(jvm的主要版本)的GC机制,前面说过了jvm的组成部分,那么想当然GC只需要负责方法区和堆就好了,虚拟机栈.本地方法 ...

  2. 3 View - Request对象

    1.HttpReqeust对象 服务器接收到http协议的请求后,会根据报文创建HttpRequest对象 视图函数的第一个参数是HttpRequest对象 在django.http模块中定义了Htt ...

  3. 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 12280  Solved: 5277[Submit][S ...

  4. c++实验4

    1. 车辆基本信息管理  #include <iostream> using namespace std; #include <string> #include "c ...

  5. 线段树&树状数组模板

    树状数组: #include <bits/stdc++.h> using namespace std; ; struct binit { int a[MAXN], n; void modi ...

  6. 使用 CommandScene 类在 XNA 中创建命令场景(十二)

    平方已经开发了一些 Windows Phone 上的一些游戏,算不上什么技术大牛.在这里分享一下经验,仅为了和各位朋友交流经验.平方会逐步将自己编写的类上传到托管项目中,没有什么好名字,就叫 WPXN ...

  7. 连接Oracle 10g时ORA-12514:TNS:监听进程不能解析在连接描述符中给出的SERVICE_NAME错误的解决

    近日服务器断电,导致客户端连接ORACLE服务器时出现ORA-12514错误,在网上查得解决方法如下 解决方法: 1. 打开/network/admin/listener.ora文件,找到: SID_ ...

  8. php字符串 函数

    strtolower()//字符串转化小写的字母 $str="abcdEfG";$s=strtolower($str); 输出:abcdefg; strtoupper();字符串转 ...

  9. importlib模块和split的结合使用

    1.给定一个文件结构,在main.py中于运用importlib 导入a.py运行其中的show()方法 ├── clazz │ ├── __init__.py │ ├── a.py │ └── b. ...

  10. gcc学习记录2——多输入文件

    首先有两个.c文件:circle.c和circulararea.c. 分别对两个源文件生成目标文件,circle.o和circulararea.o. gcc -c circle.c circularr ...