The Dataset was acquired from https://www.kaggle.com/c/titanic

For data preprocessing, I firstly defined three transformers:

  • DataFrameSelector: Select features to handle.
  • CombinedAttributesAdder: Add a categorical feature Age_cat which divided all passengers into three catagories according to their ages.
  • ImputeMostFrequent: Since the SimpleImputer( ) method was only suitable for numerical variables, I wrote an transformer to impute string missing values with the mode value. Here I was inspired by https://stackoverflow.com/questions/25239958/impute-categorical-missing-values-in-scikit-learn.

Then I wrote pipelines separately for different features

  • For numerical features, I applied DataFrameSelector, SimpleImputer and StandardScaler
  • For categorical features, I applied DataFrameSelector, ImputeMostFrequent and OneHotEncoder
  • For the new created feature Age_cat, since itself was a category but was derived from a numerical feature, I wrote an individual pipeline to impute the missing values and encode the categories.

Finally, we can build a full pipeline through FeatureUnion. Here is the code:

 # Read data
import pandas as pd
import numpy as np
import os
titanic_train = pd.read_csv('Dataset/Titanic/train.csv')
titanic_test = pd.read_csv('Dataset/Titanic/test.csv')
submission = pd.read_csv('Dataset/Titanic/gender_submission.csv') # Divide attributes and labels
titanic_labels = titanic_train['Survived'].copy()
titanic = titanic_train.drop(['Survived'],axis=1) # Feature Selection
from sklearn.base import BaseEstimator, TransformerMixin class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self,attribute_name):
self.attribute_name = attribute_name
def fit(self, X):
return self
def transform (self, X, y=None):
if 'Pclass' in self.attribute_name:
X['Pclass'] = X['Pclass'].astype(str)
return X[self.attribute_name] # Feature Creation
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
return self # nothing else to do
def transform(self, X, y=None):
Age_cat = pd.cut(X['Age'],[0,18,60,100],labels=['child', 'adult', 'old'])
Age_cat=np.array(Age_cat)
return pd.DataFrame(Age_cat,columns=['Age_Cat']) # Impute Categorical variables
class ImputeMostFrequent(BaseEstimator, TransformerMixin):
def fit(self, X, y=None):
self.fill = pd.Series([X[c].value_counts().index[0] for c in X],index=X.columns)
return self
def transform(self, X, y=None):
return X.fillna(self.fill) #Pipeline
from sklearn.impute import SimpleImputer # Scikit-Learn 0.20+
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder
from sklearn.pipeline import FeatureUnion num_pipeline = Pipeline([
('selector',DataFrameSelector(['Age','SibSp','Parch','Fare'])),
('imputer', SimpleImputer(strategy="median")),
('std_scaler', StandardScaler()),
]) cat_pipeline = Pipeline([
('selector',DataFrameSelector(['Pclass','Sex','Embarked'])),
('imputer',ImputeMostFrequent()),
('encoder', OneHotEncoder()),
]) new_pipeline = Pipeline([
('selector',DataFrameSelector(['Age'])),
#('imputer', SimpleImputer(strategy="median")),
('attr_adder',CombinedAttributesAdder()),
('imputer',ImputeMostFrequent()),
('encoder', OneHotEncoder()),
]) full_pipeline = FeatureUnion([
("num", num_pipeline),
("cat", cat_pipeline),
("new", new_pipeline),
]) titanic_prepared = full_pipeline.fit_transform(titanic)

Another thing I want to mention is that the output of a pipeline should be a 2D array rather a 1D array. So if you wanna choose only one feature, don't forget to transform the 1D array by reshape() method. Otherwise, you will receive an error like

ValueError: Expected 2D array, got 1D array instead

Specifically, apply reshape(-1,1) for column and reshape(1,-1). More about the issue can be found at https://stackoverflow.com/questions/51150153/valueerror-expected-2d-array-got-1d-array-instead.


												

[Machine Learning with Python] My First Data Preprocessing Pipeline with Titanic Dataset的更多相关文章

  1. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  2. 《Learning scikit-learn Machine Learning in Python》chapter1

    前言 由于实验原因,准备入坑 python 机器学习,而 python 机器学习常用的包就是 scikit-learn ,准备先了解一下这个工具.在这里搜了有 scikit-learn 关键字的书,找 ...

  3. Python (1) - 7 Steps to Mastering Machine Learning With Python

    Step 1: Basic Python Skills install Anacondaincluding numpy, scikit-learn, and matplotlib Step 2: Fo ...

  4. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  5. Machine Learning的Python环境设置

    Machine Learning目前经常使用的语言有Python.R和MATLAB.如果采用Python,需要安装大量的数学相关和Machine Learning的包.一般安装Anaconda,可以把 ...

  6. [Machine Learning with Python] Data Preparation through Transformation Pipeline

    In the former article "Data Preparation by Pandas and Scikit-Learn", we discussed about a ...

  7. [Machine Learning with Python] Data Preparation by Pandas and Scikit-Learn

    In this article, we dicuss some main steps in data preparation. Drop Labels Firstly, we drop labels ...

  8. [Machine Learning with Python] Familiar with Your Data

    Here I list some useful functions in Python to get familiar with your data. As an example, we load a ...

  9. [Machine Learning with Python] How to get your data?

    Using Pandas Library The simplest way is to read data from .csv files and store it as a data frame o ...

随机推荐

  1. Hive 分析函数lead、lag实例应用

    Hive的分析函数又叫窗口函数,在oracle中就有这样的分析函数,主要用来做数据统计分析的. Lag和Lead分析函数可以在同一次查询中取出同一字段的前N行的数据(Lag)和后N行的数据(Lead) ...

  2. 第八届蓝桥杯C/C++ B组省赛----分巧克力

    分巧克力 问题描述 儿童节那天有K位小朋友到小明家做客.小明拿出了珍藏的巧克力招待小朋友们. 小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形. 为了公平起见,小明需要从这 N 块巧 ...

  3. 关于tree节点的刷新

    1.刷新节点分为刷新整个树和刷新指定节点 (1)刷新整个树 $("#tree").tree("reload"); (2)刷新指定节点(方法:传入需要刷新节点的父 ...

  4. mysql查询当天的数据

    mysql查询当天的数据 贴代码: #两个时间都使用to_days()函数 select * from reple where to_days(create_time) = to_days(NOW() ...

  5. xss games20关小游戏附源代码

    1. get方式的的值直接输出来了. ?name=<script>alert(1)</script> 2. 同样没有过滤,不过需要闭合前边的双引号和>. "&g ...

  6. Robotium测试报告的生成方法(上)

    7.1 使用junit-report生成报告 这个是参考网上的:http://www.xuebuyuan.com/2148574.html,经我个人验证是可行的方法,网上写的挺详细的,不过有些不太清楚 ...

  7. MYSQL学习心得(转)

    适合有SQL SERVER或ORACLE基础的人看,有对比,学习更有效果 转自:http://www.cnblogs.com/lyhabc/ 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习 ...

  8. Linux下测试SSD固态硬盘写入速度

    最近买了一个256GB的SSD固态硬盘,想测试一下写入速度,于是如下操作. 部分代码: gettimeofday(&start, NULL); int fd = open("test ...

  9. maven学习(五)——maven命令的组合使用

    Maven的命令组合使用 maven的编译,清理,测试,打包,部署命令是可以几个命令同时组合起来使用的,常用的命令组合如下: 1.先清理再编译:"mvn clean compile" ...

  10. Struts2,get/set 自动获取/设置数据ActionSupport 类

    主页:http://struts.apache.org/在用户请求和模块化处理方面以及页面的展现这块,Struts2 发挥了强大的作用:相对于传统的Jsp+Servlet 模式,Struts2 更适合 ...