d(i, j)表示用i个邮局覆盖前j个村庄所需的最小花费

则有状态转移方程:d(i, j) = min{ d(i-1, k) + w(k+1, j) }

其中w(i, j)的值是可以预处理出来的。

下面是四边形不等式优化的代码:

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std; const int maxp = + ;
const int maxv = + ;
const int INF = 0x3f3f3f3f; int n, m; int a[maxv], sum[maxv];
int d[maxp][maxv], s[maxp][maxv]; int w(int x, int y)
{
int t = (x + y) / ;
return (t-x) * a[t]-(sum[t-]-sum[x-]) + (sum[y]-sum[t])-(y-t)*a[t];
} int main()
{
while(scanf("%d%d", &n, &m) == )
{
for(int i = ; i <= n; i++) scanf("%d", a + i);
for(int i = ; i <= n; i++) sum[i] = sum[i-] + a[i]; memset(d, 0x3f, sizeof(d));
for(int i = ; i <= n; i++) { d[][i] = w(, i); s[][i] = ; }
for(int i = ; i <= m; i++)
{
s[i][n+] = n;
for(int j = n; j > i; j--)
{
for(int k = s[i-][j]; k <= s[i][j+]; k++)
{
if(d[i-][k] + w(k + , j) < d[i][j])
{
s[i][j] = k;
d[i][j] = d[i-][k] + w(k + , j);
}
}
}
}
printf("%d\n", d[m][n]);
} return ;
}

代码君

POJ 1160 四边形不等式优化DP Post Office的更多相关文章

  1. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  2. hdu 2829 Lawrence(四边形不等式优化dp)

    T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...

  3. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  4. codevs3002石子归并3(四边形不等式优化dp)

    3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm  时间限制: 1 s  空间限制: 256000 KB  题目等级 ...

  5. CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性

    LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...

  6. HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)

    题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...

  7. 四边形不等式优化DP——石子合并问题 学习笔记

    好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...

  8. POJ 1160 Post Office (四边形不等式优化DP)

    题意: 给出m个村庄及其距离,给出n个邮局,要求怎么建n个邮局使代价最小. 析:一般的状态方程很容易写出,dp[i][j] = min{dp[i-1][k] + w[k+1][j]},表示前 j 个村 ...

  9. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

随机推荐

  1. C#中MessageBox用法大全(附效果图)<转>

    我们在程序中经常会用到MessageBox. MessageBox.Show()共有21中重载方法.现将其常见用法总结如下: 1.MessageBox.Show("Hello~~~~&quo ...

  2. odoo8 报表页面修改和字体设置

    版本8.0, 想要发票修改报表页眉的内容,去公司设置下修改,返现无论如何也不生效. 放狗后得知: You probably already know that you can customise th ...

  3. JS=和==和===的区别

    1. = : 赋值运算,赋值使用2.== :比较运算,仅比较自动转换后的值是否相等,忽略 变量类型,如:'1' == 1 //true 3.=== : 比较运算,比较值和变量类型是否相等,如:'1' ...

  4. nodejs Async 使用方法(解决多层回调嵌套)

    由于nodejs是异步处理的,有时我们想同步从mysql里取出数据,最后在处理逻辑 就需要用到此扩展: 此扩展可以避免多层回调: 安装方法: npm install async 使用方法: 1.par ...

  5. PHP中的文件操作

      文件系统的概述 任何类型的变量在运行的时候都是将其加载到内存里面.但是内存有一个特点:CPU读取内存的速度很快,但是一旦断电,内存里面的数据就会消失.如果要持久的保存数据,有两种方法:将数据存储到 ...

  6. if __FILE__ == $0 end

    if __FILE__ == $0 end __FILE__是一个“具有魔力”的变量,它代表了当前文件名.$0是用于启动程序的文件名.那么代码“if __FILE__ == $0”便意味着检查此文件是 ...

  7. dataTable 中数据的居中显示

    遇到了一个小问题,就是在向dataTable中添加数据时,数据总是向左对齐,而dataTable又没有设置数据对齐的方法,这里写一个在网上看到的一个方法,分享出来看一下,简单实用. html代码如图1 ...

  8. IE6下png背景不透明——张鑫旭博客读书笔记

    从今天开始跟着大牛张鑫旭的步伐,每天进步一点点 问题:IE6不支持png背景透明或半透明 一.可解决的方法 补充:css滤镜主要是用来实现图像的各种特殊效果.(了解) css滤镜的标识符是“filte ...

  9. OpenCV中CvMat的初始化[转]

    一)cvCreateMat创建和分配数据CvCreateMat会创建CvMat,并为CvMat分配数据.cvCreateMat可以配合cvInitMatHeader来初始化CvMat对象.因为CvCr ...

  10. SPM-软件项目管理之感想

    这学期开始选择选修课的时候是需要把每节课都过一遍的.当我上完SPM那节课的时候,我就已经决定要选这门课了,尽管还有其他的课我都还没上过.由于这节课是双语教学-中文老师兼外籍老师,这样的方式感觉很新颖, ...