POJ 1160 四边形不等式优化DP Post Office
d(i, j)表示用i个邮局覆盖前j个村庄所需的最小花费
则有状态转移方程:d(i, j) = min{ d(i-1, k) + w(k+1, j) }
其中w(i, j)的值是可以预处理出来的。
下面是四边形不等式优化的代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std; const int maxp = + ;
const int maxv = + ;
const int INF = 0x3f3f3f3f; int n, m; int a[maxv], sum[maxv];
int d[maxp][maxv], s[maxp][maxv]; int w(int x, int y)
{
int t = (x + y) / ;
return (t-x) * a[t]-(sum[t-]-sum[x-]) + (sum[y]-sum[t])-(y-t)*a[t];
} int main()
{
while(scanf("%d%d", &n, &m) == )
{
for(int i = ; i <= n; i++) scanf("%d", a + i);
for(int i = ; i <= n; i++) sum[i] = sum[i-] + a[i]; memset(d, 0x3f, sizeof(d));
for(int i = ; i <= n; i++) { d[][i] = w(, i); s[][i] = ; }
for(int i = ; i <= m; i++)
{
s[i][n+] = n;
for(int j = n; j > i; j--)
{
for(int k = s[i-][j]; k <= s[i][j+]; k++)
{
if(d[i-][k] + w(k + , j) < d[i][j])
{
s[i][j] = k;
d[i][j] = d[i-][k] + w(k + , j);
}
}
}
}
printf("%d\n", d[m][n]);
} return ;
}
代码君
POJ 1160 四边形不等式优化DP Post Office的更多相关文章
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- hdu 2829 Lawrence(四边形不等式优化dp)
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...
- BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...
- codevs3002石子归并3(四边形不等式优化dp)
3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm 时间限制: 1 s 空间限制: 256000 KB 题目等级 ...
- CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性
LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
- 四边形不等式优化DP——石子合并问题 学习笔记
好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...
- POJ 1160 Post Office (四边形不等式优化DP)
题意: 给出m个村庄及其距离,给出n个邮局,要求怎么建n个邮局使代价最小. 析:一般的状态方程很容易写出,dp[i][j] = min{dp[i-1][k] + w[k+1][j]},表示前 j 个村 ...
- BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
随机推荐
- 子shell
http://bbs.csdn.net/topics/392292455 https://www.cnblogs.com/daniaoge/p/6161821.html http://blog.csd ...
- 转:在linux中vi 文件里行尾奇怪的^M及解决
Linux编辑器vim中删除行尾的^M 有时候,在 Linux 中使用打开曾在 Windows 中编辑过的文件时,会在行尾看到 ^M 字符.看起来总是感觉很别扭. 删除方法如下: 在 Vim 的命令模 ...
- 关于JavaDate数据返回到前端变数字的问题(并引申到前后端时间的传输)
不知道为什么,前端显示的所有数据项都没有错,就只有时间那一项很奇怪,是一串数字,而且这个数字在数据库怎么都找不到…… 然后我在后端从service到controller都debug了一遍,发现数据都没 ...
- VPS/云主机CPU占用100%故障排查
VPS/云主机CPU占用100%故障排查 方法/步骤 通常情况下云主机/VPS的CPU一般不会占用100%,内存资源也不会占完.若您的服务器经常CPU资源100%,可以打开任务管理器,查看是哪个进程引 ...
- Linux 安装gcc4.8版本
1.下载安装包 http://ftp.tsukuba.wide.ad.jp/software/gcc/releases/gcc-4.8.1/ 2.解压 .tar.gz 3.下载编译所需的依赖包 cd ...
- 洛谷[LnOI2019]长脖子鹿省选模拟赛t1 -> 快速多项式变换
快速多项式 做法:刚拿到此题有点蒙,一开始真没想出来怎么做,于是试着去自己写几个例子. 自己枚举几种情况之后就基本看出来了,其实本题中 n 就是f(m)在m进制下的位数,每项的系数就是f(m)在m进制 ...
- WebService学习之旅(二)JAX-WS基于Web容器发布WebService
在上节中我们定义Web服务接口和实现类后,调用Endpoint类的静态方法publish发布来webservice,这种方法使用起来虽然简单,但是对于一个企业级应用来说通常对外提供的服务可能不止一个, ...
- LPCTSTR和CString的关系
类型理解 LPCTSTR类型: L表示long指针 这是为了兼容Windows 3.1等16位操作系统遗留下来的,在win32中以及其他的32位操作系统中, long指针和near指针及far修饰符都 ...
- License开源许可协议
开源许可协议 License是软件的授权许可,表述了你获得代码后拥有的权利,可以对别人的作品进行何种操作,何种操作又是被禁止的. 开源许可证种类 Open Source Initiative http ...
- windows8无脑式双系统安装教程(转)
转:http://blog.csdn.net/poem_qianmo/article/details/7334987 首先去微软官网将ISO文件下载下来,分为32bit跟64bit两个版本,因人而异, ...