POJ 1160 四边形不等式优化DP Post Office
d(i, j)表示用i个邮局覆盖前j个村庄所需的最小花费
则有状态转移方程:d(i, j) = min{ d(i-1, k) + w(k+1, j) }
其中w(i, j)的值是可以预处理出来的。
下面是四边形不等式优化的代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std; const int maxp = + ;
const int maxv = + ;
const int INF = 0x3f3f3f3f; int n, m; int a[maxv], sum[maxv];
int d[maxp][maxv], s[maxp][maxv]; int w(int x, int y)
{
int t = (x + y) / ;
return (t-x) * a[t]-(sum[t-]-sum[x-]) + (sum[y]-sum[t])-(y-t)*a[t];
} int main()
{
while(scanf("%d%d", &n, &m) == )
{
for(int i = ; i <= n; i++) scanf("%d", a + i);
for(int i = ; i <= n; i++) sum[i] = sum[i-] + a[i]; memset(d, 0x3f, sizeof(d));
for(int i = ; i <= n; i++) { d[][i] = w(, i); s[][i] = ; }
for(int i = ; i <= m; i++)
{
s[i][n+] = n;
for(int j = n; j > i; j--)
{
for(int k = s[i-][j]; k <= s[i][j+]; k++)
{
if(d[i-][k] + w(k + , j) < d[i][j])
{
s[i][j] = k;
d[i][j] = d[i-][k] + w(k + , j);
}
}
}
}
printf("%d\n", d[m][n]);
} return ;
}
代码君
POJ 1160 四边形不等式优化DP Post Office的更多相关文章
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- hdu 2829 Lawrence(四边形不等式优化dp)
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...
- BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...
- codevs3002石子归并3(四边形不等式优化dp)
3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm 时间限制: 1 s 空间限制: 256000 KB 题目等级 ...
- CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性
LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
- 四边形不等式优化DP——石子合并问题 学习笔记
好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...
- POJ 1160 Post Office (四边形不等式优化DP)
题意: 给出m个村庄及其距离,给出n个邮局,要求怎么建n个邮局使代价最小. 析:一般的状态方程很容易写出,dp[i][j] = min{dp[i-1][k] + w[k+1][j]},表示前 j 个村 ...
- BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
随机推荐
- Django 的简单ajax
需要通过ajax实现局部刷新 js代码 $('#guo-sou-ajax').click(function(){ #获取id为guo-sou-ajax点击后的信号 console.log($(this ...
- 移动端 mui框架中input输入框或任何输入框聚焦后页面自动上移
一.mui框架中点击input后,安卓手机弹出自带的输入键盘时,页面自动上移 实现方法: (1)只要把input标签放在mui-content这个类里面就可以了 <div class=" ...
- DDX_Text详细用法
void AFXAPI DDX_Text( CDataExchange* pDX, int nIDC, BYTE& value ); void AFXAPI DDX_Text( CDataEx ...
- Windows7获取、更换桌面背景,C#
使用的API原型是 BOOL SystemParametersinfo(UINT uiAction,UINT uiParam,PVOID pvParam,UINT fWinlni); 在C#中定义如下 ...
- Java中的if-else语句——通过示例学习Java编程(7)
作者:CHAITANYA SINGH 来源:https://www.koofun.com/pro/kfpostsdetail?kfpostsid=18 当我们需要根据一个条件执行一组语句时,我们需 ...
- 使用Spring Cloud Feign
使用Spring Cloud Feign作为HTTP客户端调用远程HTTP服务 在spring Cloud Netflix栈中,各个微服务都是以HTTP接口的形式暴露自身服务的,因此在调用远程服务时就 ...
- 学习express(一)
菜鸟教程简介:Express 是一个简洁而灵活的 node.js Web应用框架, 提供了一系列强大特性帮助你创建各种 Web 应用,和丰富的 HTTP 工具. 使用 Express 可以快速地搭建一 ...
- 国内的Jquery CDN免费服务
Jquery是个非常流行的JS前端框架,在很多网站都能看到它的身影.很多网站都喜欢采用一些Jquery CDN加速服务,这样网站加载jquery会更快.之前火端网络的一些网站都是使用Google的jq ...
- sqlite的应用
对于Android平台来说,系统内置了丰富的API来供开发人员操作SQLite,我们可以轻松的完成对数据的存取.下面就向大家介绍一下SQLite常用的操作方法.本篇文章主要用到SQLiteDataba ...
- Hibernate学习之简单应用
前言:博主在学到Spring的时候,要开始做项目了,突然觉得好像有点虚,之前学过的Hibernate框架的简单应用好像又忘记了.所以返回来,做个小笔记. 简单来讲,Hibernate框架是利用对象-关 ...