P2261 bzoj1257 [CQOI2007]余数求和
一道数论分块
首先这类的求和写一下公式
∑n%i=∑n-i*(n/i)=
∑n-∑i*(n/i)
前面的好求所以
ans=nk+∑k*(k/i);
于是进行分块
这里总结一下
只要出现除法∑就进行分块
由阿尔贝和推论
加号后面的也等于
(∑i)(∑(k/【i】-k+1/【i】))(阿尔贝恒等式)
这样是不是更显然了
∑i等差数列求和
后面的参见我的数论分块另一个博客 #include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
int main() {
ll n,k;
cin>>n>>k;
ll ans=n*k;
for(ll l=,r;l<=n;l=r+) {
if(k/l!=) r=min(k/(k/l),n);
else r=n;
ans-=(k/l)*(r-l+)*(l+r)/;
}
cout<<ans;
return ;
}
P2261 bzoj1257 [CQOI2007]余数求和的更多相关文章
- 题解 P2261【[CQOI2007]余数求和】
P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- P2261 [CQOI2007]余数求和 【整除分块】
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$ ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- BZOJ1257 CQOI2007 余数之和 【数分块】
BZOJ1257 CQOI2007 余数之和 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值 其中 ...
- [Luogu 2261] CQOI2007 余数求和
[Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...
随机推荐
- Peptidomics analysis of milk protein-derived peptides
released over time in the preterm infant stomach
(文献分享一组-陈凌云)
题目:Peptidomics analysis of milk protein-derived peptides released over time in the preterm infant st ...
- C#:索引
1. 什么是索引 索引是一组get和set访问器,类似于属性的访问器. 2. 索引和属性 和属性一样,索引不用分配内存来存储 索引和属性都主要被用来访问其他数据成员,这些成员和它们关联,它们为这些成员 ...
- PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...
- JSP && Servlet | 错误统一处理
对404错误和500错误处理: 在WebContent文件下新建404.jsp 和 500.jsp 显示错误时弹出的信息 <%@ page language="java" c ...
- UVA10305:Ordering Tasks(拓扑排序)
John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task i ...
- 牛客练习赛42B(异或的性质)
传送门 b^ c >= b - c,这个结论应该记住,我还在这里证过…… 这个题就用到了这个结论,假如当前答案集合为S,和为a,异或和为b,当前答案为a+b了.这时又读入个c,该不该加进来?a ...
- hdu6311( 2018 Multi-University Training Contest 2)
bryce1010模板 http://acm.hdu.edu.cn/showproblem.php?pid=6311 从dls思路中,我整理一下自己的思路: 1.首先也是建图 2.建图结束后,一个df ...
- hihocoder #1190 : 连通性·四 点双联通分量
http://hihocoder.com/problemset/problem/1190?sid=1051696 先抄袭一下 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描 ...
- python_22(Form-CRM)
第1章 CRM 1.1 建项目 1.2 settings1.3 规范url 1.4 公共的后台模板1.5 创建部门表 1.6 建库移库 1.7 母版继承 1.7.1 导入static 1.7.2 导入 ...
- JVM-GC日志分析
程序运行时配置如下参数: -Xms20M -Xmx20M -Xmn10M -verbose:gc -XX:+PrintGCDetails -XX:SurvivorRatio= -XX:+PrintGC ...