P2261 bzoj1257 [CQOI2007]余数求和
一道数论分块
首先这类的求和写一下公式
∑n%i=∑n-i*(n/i)=
∑n-∑i*(n/i)
前面的好求所以
ans=nk+∑k*(k/i);
于是进行分块
这里总结一下
只要出现除法∑就进行分块
由阿尔贝和推论
加号后面的也等于
(∑i)(∑(k/【i】-k+1/【i】))(阿尔贝恒等式)
这样是不是更显然了
∑i等差数列求和
后面的参见我的数论分块另一个博客 #include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
int main() {
ll n,k;
cin>>n>>k;
ll ans=n*k;
for(ll l=,r;l<=n;l=r+) {
if(k/l!=) r=min(k/(k/l),n);
else r=n;
ans-=(k/l)*(r-l+)*(l+r)/;
}
cout<<ans;
return ;
}
P2261 bzoj1257 [CQOI2007]余数求和的更多相关文章
- 题解 P2261【[CQOI2007]余数求和】
P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- P2261 [CQOI2007]余数求和 【整除分块】
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$ ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- BZOJ1257 CQOI2007 余数之和 【数分块】
BZOJ1257 CQOI2007 余数之和 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值 其中 ...
- [Luogu 2261] CQOI2007 余数求和
[Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...
随机推荐
- iOS 利用模态视图实现带黑色蒙版的底部弹窗
本demo仅适用于iOS8及以上系统. 本文将使用autolayout+storyboard来实现弹窗 第一步.storyboard创建界面 1.打开storyboard 拖一个UIViewcontr ...
- echarts相关属性设置(1)折线图篇
option = { tooltip: { trigger: 'axis', // axisPointer: { // type: 'cross', // label: { // background ...
- [題解](最短路)luogu_P2384最短路
hack: 4 4 1 2 10000 2 3 10000 3 4 10000 1 4 10000 答案:13 不能邊最短路邊取模,因為取模后最大值不一定為原來最大值,所以利用log(m*n)=log ...
- BOM主要对象属性方法总结
BOM window对象 浏览器实例,全局对象 1.窗口位置: screenTop,screenLeft(screenX,screenY):窗口相对于屏幕左边和上边的位置 moveTo(x,y):将窗 ...
- jq解析xml
注意:url路径不能用相对路径,需要加入http协议
- CF #546div2D
题目本质:只有能做到一路过关斩将的勇者才能冒泡过来救出女主. 主要代码: ; int n, m, a[maxn], ans; vector<int> edge[maxn]; set< ...
- 解决Centos下SSH登录慢的问题
产生这个问题的原因是:server的sshd会去DNS查找访问client IP的hostname,如果DNS不可用或者没有相关的记录就会花费大量的时间. 1.在server上/etc/hosts文件 ...
- 096 Unique Binary Search Trees 不同的二叉查找树
给出 n,问由 1...n 为节点组成的不同的二叉查找树有多少种?例如,给出 n = 3,则有 5 种不同形态的二叉查找树: 1 3 3 2 1 ...
- jquery.validate自定义验证--成功提示与择要提示
1. 自定义验证--成功提示 1) 添加选项 errorClass: "unchecked", validClass: "checked", errorElem ...
- kafka安装和使用
kafka安装和启动 kafka的背景知识已经讲了很多了,让我们现在开始实践吧,假设你现在没有Kafka和ZooKeeper环境. Step 1: 下载代码 下载0.10.0.0版本并且解压它. &g ...