首先想一下特殊情况,如果只有一个气球,我们要确定高度只能从下往上一层一层地测试,因为如果气球一旦爆了,便无法测出气球的硬度。

如果气球有无数个,那么就可以用二分的方法来确定。

一般地,用d(i, j)表示用i个气球实验j次所能确定的楼层的最大高度。

我们假设第一个气球从第k层扔下,

  • 如果气球爆了,那么剩下的i-1个气球实验j-1次,要能在下面的k-1层确定气球的硬度。所以这个k最大取d(i-1, j-1)+1
  • 气球没爆,那么第1~k层就完全不用管了,i个气球剩下的j-1次测试就直接往上测试就行,最多能测试d(i, j-1)层

所以d(i, j) = d(i-1, j-1) + 1 + d(i, j-1)

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef unsigned long long LL; const int maxn = + ;
const int maxm = ; LL a[maxn][maxm]; int n;
LL h; int main()
{
for(int i = ; i < maxn; i++)
for(int j = ; j < maxm; j++)
a[i][j] = a[i-][j-] + + a[i][j-]; while(cin >> n >> h && n)
{
int i;
for(i = ; i < maxm; i++) if(a[n][i] >= h) break;
if(i < maxm) printf("%d\n", i);
else puts("More than 63 trials needed.");
} return ;
}

代码君

UVa 10934 DP Dropping water balloons的更多相关文章

  1. 【Uva 10934】Dropping water balloons

    [Link]: [Description] 等价题意: 某人在1..n内选一个数x; 然后让你去猜; 你可以问他是不是在哪个范围里; 每次会告诉你YES或者NO; 问你在最坏的情况下猜出答案需要猜多少 ...

  2. UVa 10934 Dropping water balloons:dp(递推)

    题目链接:https://vjudge.net/problem/27377/origin 题意: 有一栋n层高的楼,并给你k个水球.在一定高度及以上将水球扔下,水球会摔破:在这个高度以下扔,水球不会摔 ...

  3. UVA - 10934 Dropping water balloons (dp,逆向思维)

    题目链接 题目大意:给你n个规格一样的气球和一栋大楼的高度,求最少试验几次能测出气球最高在哪一层掉下来不破. 如果这道题想用(dp[i][j]=用i个气球测出j高度的楼需要几次)来作为状态的话,那你就 ...

  4. UVA - 10934 Dropping water balloons(装满水的气球)(dp)

    题意:有k个气球,n层楼,求出至少需要多少次实验能确定气球的硬度.气球不会被实验所“磨损”. 分析: 1.dp[i][j]表示第i个气球,测试j次所能确定的最高楼层. 2.假设第i-1个气球测试j-1 ...

  5. uva 10934 Dropping water balloons(转载)

    本文转载自http://blog.csdn.net/shuangde800/article/details/11273123 题意 你有k个一模一样的水球,在一个n层楼的建筑物上进行测试,你想知道水球 ...

  6. uva 10934 Dropping water balloons

    你有k个一模一样的水球,在一个n层楼的建筑物上进行测试,你想知道水球最低从几层楼往下丢可以让水球破掉.由于你很懒,所以你想要丢最少次水球来测出水球刚好破掉的最低楼层.(在最糟情况下,水球在顶楼也不会破 ...

  7. 10934 - Dropping water balloons(DP)

    这道题的思路非常难想. 问你须要的最少实验次数,这是非常难求解的.并且我们知道的条件仅仅有三个.k.n.实验次数 . 所以我们最好还是改变思路,转而求最高所能确定的楼层数 .  那么用d[i][j]表 ...

  8. Dropping water balloons (入门dp)

    2017-08-12 18:36:24 writer:pprp 最近刚刚接触动态规划,感觉状态的查找和转移自己很难想到,都是面向题解编程,但是一开始都是这样了,只有相信我可以独立自己解决动态规划这类问 ...

  9. Dropping water balloons

    题意: 给你k个水球n层楼(n很大) 现在做实验在楼上向下丢水球,若水球没破可以重新丢,求把所有水球弄破的最小试验次数. 分析: 开始完全没思路啊.从正面求没法做不会表示状态,做实验是只能从第一层,一 ...

随机推荐

  1. Java基础(变量、运算符)

    第2天 Java基础语法 今日内容介绍 u 变量 u 运算符 第1章 变量 1.1 变量概述 前面我们已经学习了常量,接下来我们要学习变量.在Java中变量的应用比常量的应用要多很多.所以变量也是尤为 ...

  2. Linux下软件安装的四种方式

    一.源码安装 步骤: 下载,解压源码(常见的源码打包格式:.tar.gz/.tar.bz2); 可以直接下载源码再上传至linux服务器,或者在联网状态下,直接通过wget等命令获取源码安装包;源码解 ...

  3. Linux系统常用命令大全

    一.系统信息操作(备注:红色标记为常用命令,以下类推,不再赘述) arch 显示机器的处理器架构(1) uname -m   显示机器的处理器架构(2) uname -r               ...

  4. js当前日期

    function CurentTime()    {         var now = new Date();               var year = now.getFullYear(); ...

  5. 为什么HDFS的副本数通常选择3?

    HDFS采用一种称为机架感知的策略来改进数据的可靠性.可用性和网络带宽的利用率. 在大多数情况下,HDFS的副本系数是3,HDFS的存放策略是一个副本存放在本地机架节点上,另一个副本存放在同一机架的另 ...

  6. Beginning Python Chapter 1 Notes

    James Payne(American)编写的<Beginning Python>中文译作<Python入门经典>,堪称是Python的经典著作. 当然安装Python是很简 ...

  7. 多段图动态规划dp

    多段图问题是DP的基础题目.大体的意思是有一个赋权有向图,其顶点集被分为几个子集.求经过每个子集从源点到终点的最短路径 import java.util.ArrayList; import java. ...

  8. 重温Javascript(三)-继承

    继承 1.原型链继承 基本思想是利用原型让一个引用类型继承另一个引用类型的属性和方法.每个构造函数都有一个原型对象,原型对象都包含一个指向构造函数的指针,而实例都包含一个指向原型对象的内部指针.让原型 ...

  9. Predicate Programming Guide

    https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/Predicates/AdditionalChap ...

  10. javascript报错:ReferenceError: $ is not defined解决办法

    原因很简单,要么是未导入jquery包,要么是导入的顺序不对. 例如,我在制作Chrome扩展程序时,其中的一块代码如下: 然后运行时报上述错误. 解决方法:我们不难发现script位置有问题,因为$ ...