POJ:1330-Nearest Common Ancestors(LCA在线、离线、优化算法)
传送门:http://poj.org/problem?id=1330
Nearest Common Ancestors
Time Limit: 1000MS Memory Limit: 10000K
Description
A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:
In the figure, each node is labeled with an integer from {1, 2,…,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.
For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.
Write a program that finds the nearest common ancestor of two distinct nodes in a tree.
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,…, N. Each of the next N -1 lines contains a pair of integers that represent an edge –the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.
Output
Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.
Sample Input
2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5
Sample Output
4
3
解题心得:
- 这是一个LCA的裸题,可以用用离线算法,也就是tarjan来做这个题,运用并查集,一棵树上的点分为三种,一种是已经找过的点,一种是正在找的点,还有一种是没有找过的点,如果其中一个点是没有找过的就不管,继续找下去,如果一个点是找过的,就直接用并查集回到他们共同的根节点(两个点必然在同一棵子树下),如果两个点都是正在找的点,那么其中一个点就是其最近祖先。
- 还有一种就是使用倍增法来做这个题,使用倍增法需要知道当前点的深度和父节点。两个点的最近公共祖先就是他们一起向上走第一次遇到的地方,运用这个性质就可以先将两个点的深度调到相同,然后一起向上走,第一次遇到的地方就是其最近公共祖先。
- 优化的思想也很简单,两个点一步一步的向上走是不是太慢了,可不可以多走几步,那怎么走呢?就可以想到使用RMQ的思想,按照二进制来走,在统一深度的时候可以将深度大的的那个点,走深度小的那个点的二进制中没有1的位置。然后一起向上面走二进制的步数,找打到第一个不是公共祖先的点然后返回他的父节点。思想比较简单,还是看实现过程吧。
tarjan写法:
#include<cstring>
#include<stdio.h>
#include<vector>
using namespace std;
const int maxn = 1e4+100;
int father[maxn],q1,q2,ans,n;
bool vis[maxn];
vector <int> ve[maxn];
void init()
{
memset(vis,0,sizeof(vis));
memset(father,0,sizeof(father));
for(int i=0;i<maxn;i++)
ve[i].clear();
for(int i=1;i<n;i++)
{
int a,b;
scanf("%d%d",&a,&b);
ve[a].push_back(b);
vis[b] = true;
}
scanf("%d%d",&q1,&q2);
}
int find(int x)
{
if(x == father[x])
return x;
return father[x] = find(father[x]);
}
void tarjan(int x)
{
father[x] = x;
for(int i=0;i<ve[x].size();i++)
{
int v = ve[x][i];
tarjan(v);
father[v] = x;
}
if(x == q1 || x == q2)
{
if(x != q1)
swap(q1,q2);
if(father[q2])//如果其中一个点没被找到那么就继续找下去
ans = find(father[q2]);
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
init();
for(int i=1;i<=n;i++)
{
if(!vis[i])
{
tarjan(i);
break;
}
}
printf("%d\n",ans);
}
return 0;
}
倍增写法(无优化)
#include<stdio.h>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 1e4+100;
vector <int> ve[maxn];
int n,father[maxn],dep[maxn];
bool vis[maxn];
void init()
{
for(int i=0;i<=n;i++)
ve[i].clear();
memset(father,0,sizeof(father));
memset(dep,0,sizeof(dep));
memset(vis,0,sizeof(vis));
for(int i=0;i<n-1;i++)
{
int a,b;
scanf("%d%d",&a,&b);
vis[b] = true;
ve[a].push_back(b);
}
}
int dfs(int u,int f,int d)
{
father[u] = f;//记录父节点
dep[u] = d;//记录深度
for(int i=0;i<ve[u].size();i++)
{
int v = ve[u][i];
if(v == f)//主要是处理单向边
continue;
dfs(v,u,d+1);
}
}
void LCA(int q,int p)
{
if(dep[p] > dep[q])
swap(q,p);
while(dep[q] > dep[p])//调节到同一深度
q = father[q];
while(p != q)//一起向上走
{
p = father[p];
q = father[q];
}
printf("%d\n",q);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
init();
for(int i=1;i<=n;i++)
if(!vis[i])
{
dfs(i,-1,0);
break;
}
int q,p;
scanf("%d%d",&q,&p);
LCA(q,p);
}
}
LCA进过优化后的代码:
#include<stdio.h>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 1e4+100;
const int LOG = 33;
int p[maxn][33],dep[maxn],n;
bool vis[maxn];
vector <int> ve[maxn];
void init()
{
for(int i=0;i<=n;i++)
ve[i].clear();
memset(dep,0,sizeof(dep));
memset(p,0,sizeof(p));
memset(vis,0,sizeof(vis));
for(int i=1;i<n;i++)
{
int a,b;
scanf("%d%d",&a,&b);
ve[a].push_back(b);
vis[b] = true;
}
}
void dfs(int u,int f,int d)
{
p[u][0] = f;//u点向前移动2的0次方位为它的父节点
dep[u] = d;
for(int i=0;i<ve[u].size();i++)
{
int v = ve[u][i];
if(v == f)
continue;
dfs(v,u,d+1);
}
}
int LCA(int x,int y)
{
for(int i=0;i+1<LOG;i++)
for(int j=1;j<=n;j++)
if(p[j][i] < 0) p[j][i+1] = -1;//树中的节点向上移动超出了根节点都为-1
else p[j][i+1] = p[p[j][i]][i];//否则RMQ思想
if(dep[y] > dep[x])
swap(y,x);
for(int i=0;i<LOG;i++)
if(dep[x] - dep[y] >> i & 1)//向上移动到同一深度的时候,将更深的节点二进制表示中多出部分的1移走就行了
x = p[x][i];
if(x == y)//同一深度的时候已经合一了
return x;
for(int i=LOG-1;i>=0;i--)//找到向上移动中最大祖先的下面第一个节点
{
if(p[x][i] != p[y][i])
{
x = p[x][i];
y = p[y][i];
}
}
return p[x][0];
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
init();
for(int i=1;i<=n;i++)
if(!vis[i])
{
dfs(i,-1,0);
break;
}
int p,q;
scanf("%d%d",&p,&q);
printf("%d\n",LCA(p,q));
}
}
POJ:1330-Nearest Common Ancestors(LCA在线、离线、优化算法)的更多相关文章
- poj 1330 Nearest Common Ancestors lca 在线rmq
Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- POJ 1330 Nearest Common Ancestors LCA题解
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19728 Accept ...
- POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)
/* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...
- poj 1330 Nearest Common Ancestors LCA
题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...
- POJ 1330 Nearest Common Ancestors(LCA模板)
给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- POJ 1330 Nearest Common Ancestors(lca)
POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...
随机推荐
- 看完这篇文章,我奶奶都懂了https的原理
本文在个人技术博客同步发布,详情可猛戳 亦可扫描屏幕右方二维码关注个人公众号 Http存在的问题 上过网的朋友都知道,网络是非常不安全的.尤其是公共场所很多免费的wifi,或许只是攻击者的一个诱饵 ...
- hard link && symbolic link
hard link :硬连接,多了一个inode,指向原始的inode,通过这个硬连接删除文件,文件不会被真正删除,而是删除这个inode symolic link:符号连接相当于快捷方式
- 判断JS数据类型的几种方法
原文转自http://www.cnblogs.com/onepixel/p/5126046.html! 说到数据类型,我们先说一下JavaScript 中常见的几种数据类型: 基本类型:string, ...
- 51nod 1693 水群
基准时间限制:0.4 秒 空间限制:524288 KB 分值: 160 难度:6级算法题 收藏 关注 总所周知,水群是一件很浪费时间的事,但是其实在水群这件事中,也可以找到一些有意思的东西. 比如 ...
- Ubuntu下apt-get与pip安装命令的区别
在ubuntu服务器下安装包的时候,经常会用到sudo apt-get install 包名 或 sudo pip install 包名,那么两者有什么区别呢? 1.区别pip用来安装来自PyPI(h ...
- 使用JPA + Eclipselink操作PostgreSQL数据库
首先确保您已经安装了PostgreSQL.您可以参考我这篇文章PostgreSQL扫盲教程. 使用Eclipse创建一个新的JPA project: Platform选择EclipseLink,作为J ...
- 卓越管理的秘密(Behind Closed Doors)
或许提到本书甚至本书的作者Johanna Rothman我们会感到些许陌生,那么提起她的另一本获得素有软件界奥斯卡之称的Jolt生产效率大奖的名著<项目管理修炼之道>,会不会惊讶的发现,原 ...
- mdns小结
mdns的功能和普通DNS很类似,即提供主机名到IP地址的解析服务. mdns一些基本特性: 1,mdns主要为小型私有网络(不存在DNS)提供名称解析. 2,mdns使用多播(Multicast ...
- UVA12897 - Decoding Baby Boos
没必要每次都真的修改一遍字母值,用一个标记表示字母最后的值,最后一遍的时候再进行修改 #include<cstdio> #include<cstring> +; char st ...
- Android(java)学习笔记124:利用Service在后台播放背景音乐
1. 在android应用程序里,有一种没有UI的类(android.app.Service)——Service.简单来说,Service是一个 background process(背景程序),通过 ...