3315: [Usaco2013 Nov]Pogo-Cow

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 352  Solved: 181
[Submit][Status][Discuss]

Description

In an ill-conceived attempt to enhance the mobility of his prize cow Bessie, Farmer John has attached a pogo stick to each of Bessie's legs. Bessie can now hop around quickly throughout the farm, but she has not yet learned how to slow down. To help train Bessie to hop with greater control, Farmer John sets up a practice course for her along a straight one-dimensional path across his farm. At various distinct positions on the path, he places N targets on which Bessie should try to land (1 <= N <= 1000). Target i is located at position x(i), and is worth p(i) points if Bessie lands on it. Bessie starts at the location of any target of her choosing and is allowed to move in only one direction, hopping from target to target. Each hop must cover at least as much distance as the previous hop, and must land on a target. Bessie receives credit for every target she touches (including the initial target on which she starts). Please compute the maximum number of points she can obtain.

一个坐标轴有N个点,每跳到一个点会获得该点的分数,并只能朝同一个方向跳,但是每一次的跳跃的距离必须不小于前一次的跳跃距离,起始点任选,求能获得的最大分数。

Input

* Line 1: The integer N.

* Lines 2..1+N: Line i+1 contains x(i) and p(i), each an integer in the range 0..1,000,000.

Output

* Line 1: The maximum number of points Bessie can receive.

Sample Input

6
5 6
1 1
10 5
7 6
4 8
8 10

INPUT DETAILS: There are 6 targets. The first is at position x=5 and is worth 6 points, and so on.

Sample Output

25
OUTPUT DETAILS: Bessie hops from position x=4 (8 points) to position x=5 (6 points) to position x=7 (6 points) to position x=10 (5 points).

从坐标为4的点,跳到坐标为5的,再到坐标为7和,再到坐标为10的。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 101
int n,ans;
struct node{
int s,v;
}a[maxn];
int cmp(node x,node y){return x.s<y.s;}
void dfs1(int now,int limit,int sum){
ans=max(ans,sum);
if(now>n)return;
for(int i=now+;i<=n;i++){
if(a[i].s-a[now].s<limit)continue;
else dfs1(i,a[i].s-a[now].s,sum+a[i].v);
}
}
void dfs2(int now,int limit,int sum){
ans=max(ans,sum);
if(now<)return;
for(int i=now-;i>=;i--){
if(a[now].s-a[i].s<limit)continue;
else dfs2(i,a[now].s-a[i].s,sum+a[i].v);
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].s,&a[i].v);
sort(a+,a+n+,cmp);
for(int i=;i<=n;i++){
dfs1(i,,a[i].v);//向右
dfs2(i,,a[i].v);//向左
}
printf("%d",ans);
}

36分 暴力

/*
首先可以写出n^3dp的状态转移方程:f[i][j]=max{f[j][k]+val[i]},f[i][j]表示最后一步跳到点从j点跳到i点的最大价值(状态不能设成f[i],因为j对后面的决策是有影响的),然后枚举k转移,但这样在时限内是无法通过的,于是考虑如何优化dp,可以改变一下枚举顺序,也就是一般的都是先枚举i再枚举j,可以先枚举j再枚举i,这样有什么好处呢,那么k就以直接用一个指针从j-1扫到1,因为随着i的不断增加,i与j之间的距离是递增的,那么之前合法的决策现在也一定合法,那么就可以用一个值记录最大的f[j][k],转移即可。然后还要记得正反做两遍。
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 1010
int n,dp[maxn][maxn],ans;
struct node{
int pos,v;
}a[maxn];
int cmp(node x,node y){
return x.pos<y.pos;
}
int cmp2(node x,node y){
return x.pos>y.pos;
}
void work1(){
for(int j=;j<=n;j++){//从右往左跳
int k=j-,val=dp[j][]+a[j].v;
for(int i=j+;i<=n;i++){
while(k&&a[i].pos-a[j].pos>=a[j].pos-a[k].pos)
val=max(val,dp[j][k]+a[j].v),k--;
dp[i][j]=max(dp[i][j],val);
ans=max(ans,val+a[i].v);
}
}
}
void work2(){
for(int j=n;j>=;j--){
int k=j+,val=dp[j][n+]+a[j].v;
for(int i=j-;i>=;i--){
while(k<n+&&a[k].pos-a[j].pos<=a[j].pos-a[i].pos)
val=max(val,dp[j][k]+a[j].v),k++;
dp[i][j]=max(dp[i][j],val);
ans=max(ans,val+a[i].v);
}
}
}
int main(){
//freopen("Cola.txt","r",stdin);
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].pos,&a[i].v);
sort(a+,a+n+,cmp);
work1();
work2();
printf("%d",ans);
}

100分 单调队列优化dp

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 1010
int n,ans,dp[maxn][maxn],q[maxn][],head,tail;
struct node{
int pos,v;
}a[maxn];
int cmp1(node x,node y){return x.pos<y.pos;}
int cmp2(node x,node y){return x.pos>y.pos;}
void work(){
for(int i=;i<=n;i++){
dp[i][i]=a[i].v;
head=,tail=;
for(int j=i-;j>=;j--){
while(head<=tail&&q[tail][]<=dp[i][j])tail--;
q[++tail][]=j;q[tail][]=dp[i][j];
}
for(int j=i+;j<=n;j++){
dp[j][i]=a[i].v+a[j].v;
while(head<=tail&&abs(a[q[head][]].pos-a[i].pos)<abs(a[i].pos-a[j].pos))head++;
if(head<=tail)dp[j][i]=max(dp[j][i],a[j].v+q[head][]);
ans=max(ans,dp[j][i]);
}
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].pos,&a[i].v);
sort(a+,a+n+,cmp1);
work();
sort(a+,a+n+,cmp2);
work();
printf("%d",ans);
return ;
}

100分 单调队列优化dp(另一种写法)

Bzoj3315 [Usaco2013 Nov]Pogo-Cow(luogu3089)的更多相关文章

  1. BZOJ3315: [Usaco2013 Nov]Pogo-Cow

    3315: [Usaco2013 Nov]Pogo-Cow Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 143  Solved: 79[Submit] ...

  2. 【BZOJ】3314: [Usaco2013 Nov]Crowded Cows(单调队列)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3314 一眼就是维护一个距离为d的单调递减队列... 第一次写.....看了下别人的代码... 这一题 ...

  3. HDU 2717 Catch That Cow (bfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2717 Catch That Cow Time Limit: 5000/2000 MS (Java/Ot ...

  4. 【BZOJ】3016: [Usaco2012 Nov]Clumsy Cows(贪心)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3016 之前yy了一个贪心,,,但是错了,,就是枚举前后对应的字符(前面第i个和后面第i个)然后相同答 ...

  5. 题解报告:hdu 2717 Catch That Cow(bfs)

    Problem Description Farmer John has been informed of the location of a fugitive cow and wants to cat ...

  6. POJ3279 Catch That Cow(BFS)

    本文来源于:http://blog.csdn.net/svitter 意甲冠军:给你一个数字n, 一个数字k.分别代表主人的位置和奶牛的位置,主任能够移动的方案有x+1, x-1, 2*x.求主人找到 ...

  7. POJ 3278 Catch That Cow(bfs)

    传送门 Catch That Cow Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 80273   Accepted: 25 ...

  8. HDU 2717 Catch That Cow(BFS)

    Catch That Cow Farmer John has been informed of the location of a fugitive cow and wants to catch he ...

  9. Catch That Cow(BFS)

    Catch That Cow Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

随机推荐

  1. (转)ARCGIS中坐标转换及地理坐标、投影坐标的定义

    原文地址:http://blog.sina.com.cn/s/blog_663d9a1f01017cyz.html 1.动态投影(ArcMap) 所谓动态投影指,ArcMap中的Data 的空间参考或 ...

  2. P3968 [TJOI2014]电源插排

    P3968 [TJOI2014]电源插排 线段树维护最长空区间及左端点位置,这个和$nlongn$的动态最大子序和差不多,就不多解释了 $n$较大哈希优化空间 My complete code: #i ...

  3. iOS开发数据库-FMDB

    前言 FMDB是以OC的方式封装了SQLite的C语言API,使用起来更加面向对象,省去了很多麻烦.冗余的C语言代码:对比苹果自带的Core Data框架,更加轻量级和灵活:提供了多线程安全的数据库操 ...

  4. python列表推导式的if-else

    a=[i for i in range(10) if i%2==0]print(a)a=[i if i%2==0 else 'qi' for i in range(10)]print(a) 结果:[0 ...

  5. BZOJ 2019 [Usaco2009 Nov]找工作:spfa【最长路】【判正环】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2019 题意: 奶牛们没钱了,正在找工作.农夫约翰知道后,希望奶牛们四处转转,碰碰运气. 而 ...

  6. Java编程思想(18~22)

    第18章 Java I/O系统 18.1 File 类 18.1.1 目录列表器 18.1.2 目录实用工具 18.1.3 目录的检查及创建18.2 输入和输出 在Java 1.0中类库的设计者限定于 ...

  7. spring属性注入DI

    spring setter方式注入: 注入对象属性: 前提: 在bean对应实体中有对应的setter方法. 基础代码: 在bean中有另一个bean属性的setter方法. package cn.i ...

  8. 作业3rd

    第三周作业 课本学习 使用nmap扫描特定靶机 使用nessus扫描特定靶机 靶机网络情况如下 在攻击机使用Nessus,步骤如下 新建一个扫描 填入目的主机ip,点击开始进行扫描 等待 扫描结果如下 ...

  9. 【Python】numpy 数组拼接、分割

    摘自https://docs.scipy.org 1.The Basics 1.1 numpy 数组基础 NumPy’s array class is called ndarray. ndarray. ...

  10. T(n) = 25T(n/5)+n^2的时间复杂度

    对于T(n) = a*T(n/b)+c*n^k;T(1) = c 这样的递归关系,有这样的结论: if (a > b^k)   T(n) = O(n^(logb(a)));logb(a)b为底a ...