GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 5454    Accepted Submission(s): 1957

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number
pairs.

Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.



Yoiu can assume that a = c = 1 in all test cases.
 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.

Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
 

题意: 求(1,a) 和(1,b) 两个区间 公约数为k的对数的个数

思路:将a,b分别处以k,就能够转化为(1,a/k)和(1,b/k)两个区间两两互质的个数,能够先用欧拉函数求出(1,a)两两互质的个数,(a+1。b) 能够分解质因数。由于质因数的个数最多为7能够用容斥原理计算。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <string>
#include <algorithm>
#include <queue>
using namespace std; const int maxn = 10000+10;
const int maxxn = 100000+10;
typedef long long ll;
int a,b,gcd;
ll ans;
bool isPrime[maxn];
ll minDiv[maxxn],phi[maxxn],sum[maxxn];
vector<int> prime,cnt[maxxn],digit[maxxn]; void getPrime(){
prime.clear();
memset(isPrime,1,sizeof isPrime);
for(int i = 2;i < maxn; i++){
if(isPrime[i]){
prime.push_back(i);
for(int j = i*i; j < maxn; j+=i){
isPrime[j] = 0;
}
}
}
} void getPhi(){
for(ll i = 1; i < maxxn; i++){
minDiv[i] = i;
}
for(ll i = 2; i*i < maxxn; i++){
if(minDiv[i]==i){
for(int j = i*i; j < maxxn; j += i){
minDiv[j] = i;
}
}
}
phi[1] = 1;
sum[1] = 1;
for(ll i = 2; i < maxxn; i++){
phi[i] = phi[i/minDiv[i]];
if((i/minDiv[i])%minDiv[i]==0){
phi[i] *= minDiv[i];
}else{
phi[i] *= minDiv[i]-1;
}
sum[i] = phi[i]+sum[i-1];
}
} void getDigit(){
for(ll i = 1; i < maxxn; i++){
int x = i;
for(int j = 0; j < prime.size()&&x >= prime[j]; j++){
if(x%prime[j]==0){
digit[i].push_back(prime[j]);
int t = 0;
while(x%prime[j]==0){
t++;
x /= prime[j];
}
cnt[i].push_back(t);
}
}
if(x!=1){
digit[i].push_back(x);
cnt[i].push_back(1);
}
}
} int main(){
getPrime();
getPhi();
getDigit();
int ncase,T=1;
cin >> ncase;
while(ncase--){
int t1,t2;
scanf("%d%d%d%d%d",&t1,&a,&t2,&b,&gcd);
if(gcd==0){
printf("Case %d: 0\n",T++,ans);
continue;
}else{
if(a > b) swap(a,b);
a /= gcd,b /= gcd;
ans = sum[a];
for(ll i = a+1; i <= b; i++){
int d = digit[i].size();
int t = 0;
vector<int> di;
for(int k = 1; k < (1<<d); k++){
di.clear();
for(int f = 0; f < d; f++){
if(k&(1<<f)){
di.push_back(digit[i][f]);
}
}
int ji = 1;
for(int f = 0; f < di.size(); f++){
ji *= di[f];
}
if(di.size()%2==0){
t -= a/ji;
}else{
t += a/ji;
}
}
ans += a-t;
}
printf("Case %d: ",T++);
cout<<ans<<endl;
} }
return 0;
}

HDU1695-GCD(数论-欧拉函数-容斥)的更多相关文章

  1. hdu1695(莫比乌斯)或欧拉函数+容斥

    题意:求1-b和1-d之内各选一个数组成数对.问最大公约数为k的数对有多少个,数对是有序的.(b,d,k<=100000) 解法1: 这个能够简化成1-b/k 和1-d/k 的互质有序数对的个数 ...

  2. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  3. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  5. hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion

    http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...

  6. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  7. HDU1695 GCD (欧拉函数+容斥原理)

    F - GCD Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  8. 【bzoj2818】: Gcd 数论-欧拉函数

    [bzoj2818]: Gcd 考虑素数p<=n gcd(xp,yp)=p 当 gcd(x,y)=1 xp,yp<=n满足条件 p对答案的贡献: 预处理前缀和就好了 /* http://w ...

  9. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

随机推荐

  1. [原创]浅谈如何使用gcc开发NT核心驱动程序

    原文链接:[原创]浅谈如何使用gcc开发NT核心驱动程序 一谈到在 Win NT 下开发核心驱动程序,可能不少人首先都会想到微软“正统”的VC来.诚然,用VC 配合 WINDDK 的确工作的不错,但或 ...

  2. Others in life

    耗电量主要是与电机有关,800W电机在48V下的工作电流大约是800/48=16.7A,因此其工作时间主要取决于电池的容量,如果电池容量是20Ah,那么大概也就连续工作1个小时左右,也就是30-40k ...

  3. 关于Apple Pay,一篇让你不看就会后悔的文章

    编者按:本文作者康上明学为“小米生活”产品经理,在苹果Apple Pay发布后,他对该产品做了深入研究,带来这篇文章. 对于 Apple Pay ,我有几个疑问: 线下支付是一个庞大复杂的流程,当中涉 ...

  4. poj2389---大数乘法

    #include<stdlib.h> #include<stdio.h> #include<string.h> #define MAX 100 int main() ...

  5. MyEclipse修改

    MyEclipse设置编码方式 http://www.cnblogs.com/susuyu/archive/2012/06/27/2566062.html Eclipse添加Spket插件实现ExtJ ...

  6. Python开发技术详解(视频+源码+文档)

    Python, 是一种面向对象.直译式计算机程序设计语言.Python语法简捷而清晰,具有丰富和强大的类库.它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结 ...

  7. window.open打开新页面,并将本页数据用过url传递到打开的页面;需要两个页面;

    页面1 <!doctype html> <html lang="en"> <head> <meta charset="UTF-8 ...

  8. Xcode5新特性

    小引: 自从北京时间2013年06月11日苹果发布Xcode 5 Developer Preview 1,到现在,苹果也放出了Xcode 5 Developer Preview 3,速度还是蛮快的,希 ...

  9. Android getReadableDatabase() 和 getWritableDatabase()

    Android使用getWritableDatabase()和getReadableDatabase()方法都可以获取一个用于操作数据库的SQLiteDatabase实例.(getReadableDa ...

  10. Request.ServerVariables完整参考

    Request.ServerVariables("Url") 返回服务器地址 Request.ServerVariables("Path_Info") 客户端提 ...