3315: [Usaco2013 Nov]Pogo-Cow

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 143  Solved: 79
[Submit][Status]

Description

In an ill-conceived attempt to enhance the mobility of his prize cow Bessie, Farmer John has attached a pogo stick to each of Bessie's legs. Bessie can now hop around quickly throughout the farm, but she has not yet learned how to slow down. To help train Bessie to hop with greater control, Farmer John sets up a practice course for her along a straight one-dimensional path across his farm. At various distinct positions on the path, he places N targets on which Bessie should try to land (1 <= N <= 1000). Target i is located at position x(i), and is worth p(i) points if Bessie lands on it. Bessie starts at the location of any target of her choosing and is allowed to move in only one direction, hopping from target to target. Each hop must cover at least as much distance as the previous hop, and must land on a target. Bessie receives credit for every target she touches (including the initial target on which she starts). Please compute the maximum number of points she can obtain.

一个坐标轴有N个点,每跳到一个点会获得该点的分数,并只能朝同一个方向跳,但是每一次的跳跃的距离必须不小于前一次的跳跃距离,起始点任选,求能获得的最大分数。

Input

* Line 1: The integer N.

* Lines 2..1+N: Line i+1 contains x(i) and p(i), each an integer in the range 0..1,000,000.

Output

* Line 1: The maximum number of points Bessie can receive.

Sample Input

6
5 6
1 1
10 5
7 6
4 8
8 10

INPUT DETAILS: There are 6 targets. The first is at position x=5 and is worth 6 points, and so on.

Sample Output

25
OUTPUT DETAILS: Bessie hops from position x=4 (8 points) to position x=5 (6 points) to position x=7 (6 points) to position x=10 (5 points).

从坐标为4的点,跳到坐标为5的,再到坐标为7和,再到坐标为10的。

HINT

 

Source

题解:
n^3的dp很好想,我们想一下如何把时间压缩成 n^2
n^3时间主要花费在寻找合法的下一个节点上,这样做了很多无用功
比如说  我们现在已经知道  i->j 之后 能到 k,那么 i->j 之后也一定能到k+1
所以我们用 f[j][i]来更新它能更新到的节点,
显然如果 s[k]-s[j]>=s[j]-s[i] 那么能转移到 k 的状态应该是 max(f[j][i],f[j][i+1],.......f[j][j])
而s[k]是递增的,也就是说能更新到 k,那么一定能更新到 k+1以及n。
所以我们维护一个区域最大值,枚举 j的前一个节点 i,tmp记录 f[j][i]..f[j][j]的最大值
然后 k 是一个递增的,这样每个节点的转移是可以做到O(n)的,整个算法的复杂度就是O(n^2)
注意还要倒着做一遍
说不太清楚,看代码更简单?有点儿单调队列的感觉?
代码:
 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 1500
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,ans=,f[maxn][maxn];
struct rec{int x,y;}a[maxn];
inline bool cmp(rec a,rec b)
{
return a.x<b.x;
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();
for1(i,n)a[i].x=read(),a[i].y=read();
sort(a+,a+n+,cmp);
a[].x=-inf;
for1(i,n)
{
f[i][i]=a[i].y;
int k=i+,tmp=f[i][i];
for3(j,i-,)
{
while(k<=n&&a[k].x-a[i].x<a[i].x-a[j].x)
{
f[k][i]=max(f[k][i],tmp+a[k].y);
//cout<<k<<' '<<i<<' '<<f[k][i]<<endl;
ans=max(ans,f[k][i]);
k++;
}
tmp=max(tmp,f[i][j]);
if(k>n)break;
}
}
//for1(i,n)for1(j,i-1)cout<<i<<' '<<j<<' '<<f[i][j]<<endl;
memset(f,,sizeof(f));
a[n+].x=inf;
for3(i,n,)
{
f[i][i]=a[i].y;
int k=i-,tmp=f[i][i];
for2(j,i+,n+)
{
while(k&&a[i].x-a[k].x<a[j].x-a[i].x)
{
f[k][i]=max(f[k][i],tmp+a[k].y);
//cout<<k<<' '<<i<<' '<<tmp<<' '<<f[k][i]<<endl;
ans=max(ans,f[k][i]);
k--;
}
tmp=max(tmp,f[i][j]);
if(!k)break;
}
}
printf("%d\n",ans);
return ;
}

BZOJ3315: [Usaco2013 Nov]Pogo-Cow的更多相关文章

  1. Bzoj3315 [Usaco2013 Nov]Pogo-Cow(luogu3089)

    3315: [Usaco2013 Nov]Pogo-Cow Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 352  Solved: 181[Submit ...

  2. bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草*&&bzoj3074[Usaco2013 Mar]The Cow Run*

    bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草 bzoj3074[Usaco2013 Mar]The Cow Run 题意: 数轴上有n棵草,牛初始在L ...

  3. BZOJ 3315: [Usaco2013 Nov]Pogo-Cow( dp )

    我真想吐槽USACO的数据弱..= = O(n^3)都能A....上面一个是O(n²), 一个是O(n^3) O(n^3)做法, 先排序, dp(i, j) = max{ dp(j, p) } + w ...

  4. BZOJ3314: [Usaco2013 Nov]Crowded Cows

    3314: [Usaco2013 Nov]Crowded Cows Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 86  Solved: 61[Subm ...

  5. BZOJ 3314: [Usaco2013 Nov]Crowded Cows( 单调队列 )

    从左到右扫一遍, 维护一个单调不递减队列. 然后再从右往左重复一遍然后就可以统计答案了. ------------------------------------------------------- ...

  6. 3314: [Usaco2013 Nov]Crowded Cows

    3314: [Usaco2013 Nov]Crowded Cows Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 111  Solved: 79[Sub ...

  7. BZOJ1640: [Usaco2007 Nov]Best Cow Line 队列变换

    1640: [Usaco2007 Nov]Best Cow Line 队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 493  Solved: 2 ...

  8. 1640: [Usaco2007 Nov]Best Cow Line 队列变换

    1640: [Usaco2007 Nov]Best Cow Line 队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 543  Solved: 2 ...

  9. 【BZOJ3312】[Usaco2013 Nov]No Change 状压DP+二分

    [BZOJ3312][Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for ...

随机推荐

  1. jquery trigger传值

    方法1: var e = $.Event('ok.menu.table', { relatedTarget: $el }) that.$el.trigger(e); 接受方法如下.此时,related ...

  2. Ubuntu+Win7+Samba实现文件共享

    Samba是Ubuntu和Windows进行网络共享的工具,比如分享打印机,互相之间传输资料文件. 安装samba sudo apt-get install samba 查看samba是否安装成功 s ...

  3. Tomcat的错误 之 java.lang.IllegalArgumentException: Document base * does not exist

    Tomcat的异常 之 java.lang.IllegalArgumentException: Document base 有些刚开始使用的Tomcat的朋友会出现的问题,明明已经将某个web应用从t ...

  4. 针对Yii框架的nginx配置

    我曾经针对yii制作了 个nginx配置,其中包括了以下几项内容: rewrite规则(try_file),需要nginx0.8.6版本以上支持. 针对于icon, robots.txt文件的日志优化 ...

  5. Android ScrollView

    ScrollView 滚动视图 滚动视图用于为其它组件添加滚动条,在默认的情况下,当窗体中内容比较多,而一屏显示不下时,超出的部分不能被用户所看到.因为Android的布局管理器本身没有提供滚动屏幕的 ...

  6. c++ map与 qt QMap insert 区别

    当插入相同key的字段时, c++  map 会保留原来的字段, QMap 则会取代原来的字段.

  7. U1总结

    import java.io.Writer; import java.util.Iterator; import javax.xml.transform.TransformerFactory; imp ...

  8. CSS 之 margin知识点

    1.margin的百分比值 普通元素的百分比maigin相对于容器元素的宽度(width) 进行计算的. 这里我们在图片外面设置一个宽高分别为800 * 600的容器.设置img{ margin: 1 ...

  9. 底层restful接口修改分析

    记录接口调用次数,接口调用时间需求. 需要修改公共的类,就是restful接口,可以认为是底层的代码,具体的实现有哪些?插入数据库肯定不能影响性能.

  10. nginx环境下搭建nagios 3.5.0,及配置pnp4nagios画图

    本文基于<LNMP最新源码安装脚本>,Nagios依赖PHP环境和perl环境,由于Nginx不支持Perl的CGI,需先来搭建Perl环境,Nagios原理介绍略.一.下载最新稳定源码包 ...