3315: [Usaco2013 Nov]Pogo-Cow

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 143  Solved: 79
[Submit][Status]

Description

In an ill-conceived attempt to enhance the mobility of his prize cow Bessie, Farmer John has attached a pogo stick to each of Bessie's legs. Bessie can now hop around quickly throughout the farm, but she has not yet learned how to slow down. To help train Bessie to hop with greater control, Farmer John sets up a practice course for her along a straight one-dimensional path across his farm. At various distinct positions on the path, he places N targets on which Bessie should try to land (1 <= N <= 1000). Target i is located at position x(i), and is worth p(i) points if Bessie lands on it. Bessie starts at the location of any target of her choosing and is allowed to move in only one direction, hopping from target to target. Each hop must cover at least as much distance as the previous hop, and must land on a target. Bessie receives credit for every target she touches (including the initial target on which she starts). Please compute the maximum number of points she can obtain.

一个坐标轴有N个点,每跳到一个点会获得该点的分数,并只能朝同一个方向跳,但是每一次的跳跃的距离必须不小于前一次的跳跃距离,起始点任选,求能获得的最大分数。

Input

* Line 1: The integer N.

* Lines 2..1+N: Line i+1 contains x(i) and p(i), each an integer in the range 0..1,000,000.

Output

* Line 1: The maximum number of points Bessie can receive.

Sample Input

6
5 6
1 1
10 5
7 6
4 8
8 10

INPUT DETAILS: There are 6 targets. The first is at position x=5 and is worth 6 points, and so on.

Sample Output

25
OUTPUT DETAILS: Bessie hops from position x=4 (8 points) to position x=5 (6 points) to position x=7 (6 points) to position x=10 (5 points).

从坐标为4的点,跳到坐标为5的,再到坐标为7和,再到坐标为10的。

HINT

 

Source

题解:
n^3的dp很好想,我们想一下如何把时间压缩成 n^2
n^3时间主要花费在寻找合法的下一个节点上,这样做了很多无用功
比如说  我们现在已经知道  i->j 之后 能到 k,那么 i->j 之后也一定能到k+1
所以我们用 f[j][i]来更新它能更新到的节点,
显然如果 s[k]-s[j]>=s[j]-s[i] 那么能转移到 k 的状态应该是 max(f[j][i],f[j][i+1],.......f[j][j])
而s[k]是递增的,也就是说能更新到 k,那么一定能更新到 k+1以及n。
所以我们维护一个区域最大值,枚举 j的前一个节点 i,tmp记录 f[j][i]..f[j][j]的最大值
然后 k 是一个递增的,这样每个节点的转移是可以做到O(n)的,整个算法的复杂度就是O(n^2)
注意还要倒着做一遍
说不太清楚,看代码更简单?有点儿单调队列的感觉?
代码:
 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 1500
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,ans=,f[maxn][maxn];
struct rec{int x,y;}a[maxn];
inline bool cmp(rec a,rec b)
{
return a.x<b.x;
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();
for1(i,n)a[i].x=read(),a[i].y=read();
sort(a+,a+n+,cmp);
a[].x=-inf;
for1(i,n)
{
f[i][i]=a[i].y;
int k=i+,tmp=f[i][i];
for3(j,i-,)
{
while(k<=n&&a[k].x-a[i].x<a[i].x-a[j].x)
{
f[k][i]=max(f[k][i],tmp+a[k].y);
//cout<<k<<' '<<i<<' '<<f[k][i]<<endl;
ans=max(ans,f[k][i]);
k++;
}
tmp=max(tmp,f[i][j]);
if(k>n)break;
}
}
//for1(i,n)for1(j,i-1)cout<<i<<' '<<j<<' '<<f[i][j]<<endl;
memset(f,,sizeof(f));
a[n+].x=inf;
for3(i,n,)
{
f[i][i]=a[i].y;
int k=i-,tmp=f[i][i];
for2(j,i+,n+)
{
while(k&&a[i].x-a[k].x<a[j].x-a[i].x)
{
f[k][i]=max(f[k][i],tmp+a[k].y);
//cout<<k<<' '<<i<<' '<<tmp<<' '<<f[k][i]<<endl;
ans=max(ans,f[k][i]);
k--;
}
tmp=max(tmp,f[i][j]);
if(!k)break;
}
}
printf("%d\n",ans);
return ;
}

BZOJ3315: [Usaco2013 Nov]Pogo-Cow的更多相关文章

  1. Bzoj3315 [Usaco2013 Nov]Pogo-Cow(luogu3089)

    3315: [Usaco2013 Nov]Pogo-Cow Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 352  Solved: 181[Submit ...

  2. bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草*&&bzoj3074[Usaco2013 Mar]The Cow Run*

    bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草 bzoj3074[Usaco2013 Mar]The Cow Run 题意: 数轴上有n棵草,牛初始在L ...

  3. BZOJ 3315: [Usaco2013 Nov]Pogo-Cow( dp )

    我真想吐槽USACO的数据弱..= = O(n^3)都能A....上面一个是O(n²), 一个是O(n^3) O(n^3)做法, 先排序, dp(i, j) = max{ dp(j, p) } + w ...

  4. BZOJ3314: [Usaco2013 Nov]Crowded Cows

    3314: [Usaco2013 Nov]Crowded Cows Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 86  Solved: 61[Subm ...

  5. BZOJ 3314: [Usaco2013 Nov]Crowded Cows( 单调队列 )

    从左到右扫一遍, 维护一个单调不递减队列. 然后再从右往左重复一遍然后就可以统计答案了. ------------------------------------------------------- ...

  6. 3314: [Usaco2013 Nov]Crowded Cows

    3314: [Usaco2013 Nov]Crowded Cows Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 111  Solved: 79[Sub ...

  7. BZOJ1640: [Usaco2007 Nov]Best Cow Line 队列变换

    1640: [Usaco2007 Nov]Best Cow Line 队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 493  Solved: 2 ...

  8. 1640: [Usaco2007 Nov]Best Cow Line 队列变换

    1640: [Usaco2007 Nov]Best Cow Line 队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 543  Solved: 2 ...

  9. 【BZOJ3312】[Usaco2013 Nov]No Change 状压DP+二分

    [BZOJ3312][Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for ...

随机推荐

  1. 怎样绕过oracle listener 监听的password设置

     怎样绕过oracle 监听的password设置: 1.找到监听进程pid ,并将它kill 掉 ps -ef|grep tns [oracle@lixora admin]$ ps -ef|gr ...

  2. C++虚函数及虚函数表解析

    一.背景知识(一些基本概念) 虚函数(Virtual Function):在基类中声明为 virtual 并在一个或多个派生类中被重新定义的成员函数.纯虚函数(Pure Virtual Functio ...

  3. STL之Iterator(迭代器)

    概述 根据迭代器功能的不同,将迭代器分为以下几类: Iterator Category Ability Providers Input iterator Reads forward istream O ...

  4. js函数中变量的作用域

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  5. codevs 4827 妹子

    /* 赤裸裸的数学题 各种整体+插空 所以嘛 学好数学还是很重要的 ans=(n-1)!*(m-1)!*(2+(n-2)(n-1)) */ #include<iostream> #incl ...

  6. MVC4 EF linq从客户端中检测到有潜在的危险的Request.Path值

    今天做项目的时候遇到了这样的问题贴出来给大家分享下啦, 使用MVC4 EF linq跳转视图的时候出现,从客户端中检测到有潜在的危险的Request.Path值错误,如下图所示: 解决办法如下:  r ...

  7. 实现SQLServer数据库转成MYSQL数据库

    1.首先需要下载安装工具Navicat Premium. 2.注意:将数据库移至本地SQLServer,我试过直接在局域网上其他SQLServer服务器上想转到本地Mysql好像有问题,想将远程数据库 ...

  8. java.io.FileNotFoundException: class path resource [bean/test/User.hbm.xml] cannot be opened because it does not exist

    确定下 WEB-INF/classes下有没有,不是src下哦 工程的src下创建后,会发布到tomcat下项目下的classes中

  9. UIWebView禁止点击后跳转

    #pragma mark 禁止webview中的链接点击 - (BOOL)webView:(UIWebView*)webView shouldStartLoadWithRequest:(NSURLRe ...

  10. Java内存分配和GC

    Java内存分配和回收的机制概括的说,就是:分代分配,分代回收. 对象将根据存活的时间被分为:年轻代(Young Generation).年老代(Old Generation).永久代(Permane ...