cf413E Maze 2D
The last product of the R2 company in the 2D games' field is a new revolutionary algorithm of searching for the shortest path in a 2 × nmaze.
Imagine a maze that looks like a 2 × n rectangle, divided into unit squares. Each unit square is either an empty cell or an obstacle. In one unit of time, a person can move from an empty cell of the maze to any side-adjacent empty cell. The shortest path problem is formulated as follows. Given two free maze cells, you need to determine the minimum time required to go from one cell to the other.
Unfortunately, the developed algorithm works well for only one request for finding the shortest path, in practice such requests occur quite often. You, as the chief R2 programmer, are commissioned to optimize the algorithm to find the shortest path. Write a program that will effectively respond to multiple requests to find the shortest path in a 2 × n maze.
The first line contains two integers, n and m (1 ≤ n ≤ 2·105; 1 ≤ m ≤ 2·105) — the width of the maze and the number of queries, correspondingly. Next two lines contain the maze. Each line contains n characters, each character equals either '.' (empty cell), or 'X' (obstacle).
Each of the next m lines contains two integers vi and ui (1 ≤ vi, ui ≤ 2n) — the description of the i-th request. Numbers vi, ui mean that you need to print the value of the shortest path from the cell of the maze number vi to the cell number ui. We assume that the cells of the first line of the maze are numbered from 1 to n, from left to right, and the cells of the second line are numbered from n + 1 to 2n from left to right. It is guaranteed that both given cells are empty.
Print m lines. In the i-th line print the answer to the i-th request — either the size of the shortest path or -1, if we can't reach the second cell from the first one.
4 7
.X..
...X
5 1
1 3
7 7
1 4
6 1
4 7
5 7
1
4
0
5
2
2
2
10 3
X...X..X..
..X...X..X
11 7
7 18
18 10
9
-1
3
这……线段树神题啊
但是这是道馆之战的弱化版……
道馆之战是树上的情况,这题只是一条链的情况
用线段树维护每一个1*2的格子从第一格能不能到第一格、从第一格能不能到第二格、从第二格能不能到第一格、从第二格能不能到第二格
#include<cstdio>
#include<iostream>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define pi 3.1415926535897932384626433832795028841971
using namespace std;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct segtree{
int l,r;
int a_to_a,a_to_b,b_to_a,b_to_b;
}tree[1000010];
segtree query;
bool mrk[2][200010];
int n,m,x0,y0,x1,y1;
segtree merge(segtree a,segtree b)
{
segtree k;
k.a_to_a=k.a_to_b=k.b_to_a=k.b_to_b=-1;
k.l=min(a.l,b.l); k.r=max(a.r,b.r); if (a.a_to_a!=-1&&b.a_to_a!=-1)k.a_to_a=a.a_to_a+b.a_to_a+1;
if (a.a_to_b!=-1&&b.b_to_a!=-1)
{
if (k.a_to_a==-1)k.a_to_a=a.a_to_b+b.b_to_a+1;
else k.a_to_a=min(k.a_to_a,a.a_to_b+b.b_to_a+1);
} if (a.a_to_a!=-1&&b.a_to_b!=-1)k.a_to_b=a.a_to_a+b.a_to_b+1;
if (a.a_to_b!=-1&&b.b_to_b!=-1)
{
if (k.a_to_b==-1)k.a_to_b=a.a_to_b+b.b_to_b+1;
else k.a_to_b=min(k.a_to_b,a.a_to_b+b.b_to_b+1);
} if (a.b_to_a!=-1&&b.a_to_a!=-1)k.b_to_a=a.b_to_a+b.a_to_a+1;
if (a.b_to_b!=-1&&b.b_to_a!=-1)
{
if (k.b_to_a==-1)k.b_to_a=a.b_to_b+b.b_to_a+1;
else k.b_to_a=min(k.b_to_a,a.b_to_b+b.b_to_a+1);
} if (a.b_to_a!=-1&&b.a_to_b!=-1)k.b_to_b=a.b_to_a+b.a_to_b+1;
if (a.b_to_b!=-1&&b.b_to_b!=-1)
{
if (k.b_to_b==-1)k.b_to_b=a.b_to_b+b.b_to_b+1;
else k.b_to_b=min(k.b_to_b,a.b_to_b+b.b_to_b+1);
}
return k;
}
inline void buildtree(int now,int l,int r)
{
tree[now].l=l;tree[now].r=r;
if (l==r)
{
tree[now].a_to_a=tree[now].a_to_b=tree[now].b_to_a=tree[now].b_to_b=-1;
if (mrk[0][l])tree[now].a_to_a=0;
if (mrk[1][l])tree[now].b_to_b=0;
if (mrk[0][l]&&mrk[1][l])
{
tree[now].a_to_b=1;
tree[now].b_to_a=1;
}
return;
}
int mid=(l+r)>>1;
buildtree(now<<1,l,mid);
buildtree(now<<1|1,mid+1,r);
tree[now]=merge(tree[now<<1],tree[now<<1|1]);
}
inline void work(int now,int x,int y)
{
int l=tree[now].l,r=tree[now].r;
if (l==x&&r==y)
{
if (!query.l)query=tree[now];
else query=merge(query,tree[now]);
return;
}
int mid=(l+r)>>1;
if (y<=mid)work(now<<1,x,y);
else if (x>mid)work(now<<1|1,x,y);
else
{
work(now<<1,x,mid);
work(now<<1|1,mid+1,y);
}
}
inline int ask(int x0,int y0,int x1,int y1)
{
query.l=query.r=0;
work(1,y0,y1);
if (!x0&&!x1)return query.a_to_a;
if (!x0&&x1)return query.a_to_b;
if (x0&&!x1)return query.b_to_a;
if (x0&&x1)return query.b_to_b;
}
int main()
{
n=read();m=read();
for(int i=0;i<=1;i++)
for(int j=1;j<=n;j++)
{
char ch=getchar();while (ch!='X'&&ch!='.')ch=getchar();
if (ch=='.')mrk[i][j]=1;
}
buildtree(1,1,n);
for(int i=1;i<=m;i++)
{
y0=read();y1=read();x0=x1=0;
if ((y0-1)%n+1>(y1-1)%n+1)swap(y0,y1);
if (y0>n){x0=1;y0-=n;}
if (y1>n){x1=1;y1-=n;}
printf("%d\n",ask(x0,y0,x1,y1));
}
}
cf413E Maze 2D的更多相关文章
- test20181005 迷宫
题意 分析 时间复杂度里的n,m写反了. 出题人很有举一反三的精神. 代码 我的代码常数巨大,加了各种优化后开O3最慢点都要0.9s. #include<cstdlib> #include ...
- CF数据结构练习
1. CF 438D The Child and Sequence 大意: n元素序列, m个操作: 1,询问区间和. 2,区间对m取模. 3,单点修改 维护最大值, 取模时暴力对所有>m的数取 ...
- DFS经典题,reachable or not in a 2D maze
[[0, 0, 0, 0, 0, 1], [1, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], ...
- LightOJ 1337 F - The Crystal Maze (bfs)
Description You are in a plane and you are about to be dropped with a parasuit in a crystal maze. As ...
- [LeetCode] The Maze III 迷宫之三
There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolli ...
- [LeetCode] The Maze II 迷宫之二
There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolli ...
- [LeetCode] The Maze 迷宫
There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolli ...
- Leetcode: The Maze III(Unsolved Lock Problem)
There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolli ...
- Leetcode: The Maze II
There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolli ...
随机推荐
- oracle中 connect by prior 递归算法
Oracle中start with...connect by prior子句用法 connect by 是结构化查询中用到的,其基本语法是: select ... from tablename sta ...
- form表单提交之前推断
1.使用onsubmit方法 <form name="Form" action="t" method="post" onsubmit= ...
- 用python演示一个简单的AST(抽象语法树)
如果对'a + 3 * b'进行解释,当中a=2,b=5 代码非常easy,就不再进行具体的解释了. Num = lambda env, n: n Var = lambda env, x: env[x ...
- MVC实现类似QQ的网页聊天功能-Ajax(上)
说到QQ聊天,程序员首先想到的就是如何实现长连接,及时的接收并回馈信息.那么首先想到的就是Ajax,Ajax的运行机制是通过XMLHttpRequest向服务器发出异步请求,并接受数据,这样就可以实现 ...
- Word01-从正文处开始插入页码
一份正式的文档应该由以下几部分组成:封面.目录.摘要.正文…… 现在要求前三页不需要插入页码,从正文部分插入页码为第一页,原文档如下: 步骤: 第一步:将光标移动到摘要页的末尾,选择页面部局--> ...
- Function.prototype.bind
解析Function.prototype.bind 简介 对于一个给定的函数,创造一个绑定对象的新函数,这个函数和之前的函数功能一样,this值是它的第一个参数,其它参数,作为新的函数的给定参数. b ...
- python 下的数据结构与算法---3:python内建数据结构的方法及其时间复杂度
目录 一:python内部数据类型分类 二:各数据结构 一:python内部数据类型分类 这里有个很重要的东西要先提醒注意一下:原子性数据类型和非原子性数据类型的区别 Python内部数据从某种形式上 ...
- XAML 名称范围 (x:) 语言特性
本节介绍为 Windows 运行时实现的 XAML 语言特性的参考信息. 本部分内容 主题 描述 x:Class 属性 配置 XAML 编译,在标记和代码隐藏之间连接分部类.代码分部类在一个独立的代码 ...
- JavaScript模块化编程 - CommonJS, AMD 和 RequireJS之间的关系
这几天在学习CommonJS的时候突然在StackOverflow上搜索到一个非常好的一个帖子,是关于CommonJS, AMD和RequireJS之间的关系的问答贴.我感觉写的非常好,鉴于没有找到相 ...
- C#多线程实践——创建和开始使用
线程用Thread类来创建, 通过ThreadStart委托来指明方法从哪里开始运行.ThreadStart的声明如下: public delegate void ThreadStart(); 调用S ...