题目链接:

http://poj.org/problem?id=1112

题目大意:

有编号为1~n的n个人,给出每个人认识的人的编号,注意A认识B,B不一定认识A,让你将所有的人分成两组,要求每组的人相互认识,且两组的人数要尽可能的接近。

求出每组的人的编号。

解题思路:

图论+背包(输出物品)。

相互认识的关系不好确定分组,如果转换思路,考虑相互不认识的情况就简单好多,如果A不认识B,且B不认识C,那么A和C必须分到同一组里。所以就想到了,连通分量的染色,相邻的两个染不同的颜色(0或1),每一个连通分量分成两组,并且相同颜色的人不能有边(一定要相互认识),容易知道不同连通分量的人一定相互认识,否则是连通的。

然后问题就转化为有多个连通分量,每个连通分量有两组,每组必须属于一个队,求两个队的人数差最小,并分别输出两队的人。

dp[i][j]表示到了第i个连通分量,且第一个队的人数为j时是否能够恰好凑齐。

ans[i][j]表示对应于状态dp[i][j]时的选择,0表示选择0颜色的节点,1表示选择1颜色的节点。

求出dp[num][]后,根据ans[num][]的值往前推,颜色选好后把所有的该颜色节点都加进去该队里去。

代码:

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#define eps 1e-6
#define INF 0x1f1f1f1f
#define PI acos(-1.0)
#define ll __int64
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std; //本题关键是建反图,将相互认识的情况,转化成相互不认识的情况
//思维逆向,这样便于处理,因为不同的连通区一定相互认识,同一连通区内可以分层处理,相邻的一定不相互认识
#define Maxn 110
struct Node
{
int cnt[2];
int sa[2][Maxn]; //存每个连通区间的两类人数
}node[Maxn];
bool kn[Maxn][Maxn],nn[Maxn][Maxn];
bool vis[Maxn];
int n,num;
bool dp[Maxn][Maxn]; //dp[i]表示第一个team的人数
int ans[Maxn][Maxn]; //记录到达第i个连通区且状态为j时第一个队的选择
int aa[Maxn],bb[Maxn];//aa表示第一个队的组成成员, void dfs(int v,int p)
{
node[num].cnt[p]++; //该连通区该颜色的人数
node[num].sa[p][node[num].cnt[p]]=v;//标号
for(int i=1;i<=n;i++)
{
if(!nn[v][i]||vis[i])
continue;
vis[i]=true;
dfs(i,p^1);
}
} bool ok() //对每一个区间扫描是否有矛盾的
{
for(int i=1;i<=num;i++)
{
for(int p=0;p<2;p++)
{
for(int k=1;k<=node[i].cnt[p];k++)
for(int m=k+1;m<=node[i].cnt[p];m++)
{
int a=node[i].sa[p][k],b=node[i].sa[p][m];
if(nn[a][b]) //同一联通快内,同颜色不认识的话有矛盾
return false;
}
}
}
return true;
} int main()
{
int a; while(~scanf("%d",&n))
{
memset(kn,false,sizeof(kn));
memset(nn,false,sizeof(nn));
for(int i=1;i<=n;i++)
while(scanf("%d",&a)&&a)
kn[i][a]=true;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(!kn[i][j]||!kn[j][i])
nn[i][j]=nn[j][i]=true; //建无向反图
memset(vis,false,sizeof(vis));
num=0; //num表示连通区的个数
for(int i=1;i<=n;i++) //对每一个连通区间 染色
if(!vis[i])
{
num++;
vis[i]=true;
node[num].cnt[0]=node[num].cnt[1]=0;
dfs(i,0);
}
if(!ok())
{
printf("No solution\n");
continue;
}
memset(dp,false,sizeof(dp));
memset(ans,0,sizeof(ans));
dp[0][0]=true;
for(int i=1;i<=num;i++) //简单背包,每个连通分量每种颜色必须进一个小队
{
for(int j=n;j>=min(node[i].cnt[0],node[i].cnt[1]);j--) //第一个背包
{
if(!dp[i][j]&&j>=node[i].cnt[0]&&dp[i-1][j-node[i].cnt[0]])
dp[i][j]=true,ans[i][j]=0;
if(!dp[i][j]&&j>=node[i].cnt[1]&&dp[i-1][j-node[i].cnt[1]])
dp[i][j]=true,ans[i][j]=1;
}
}
int gap=n,temp1=0,temp2=0;
for(int i=1;i<=n;i++) //求出 差值最小的 两支队伍数
if(dp[num][i]&&abs(i-(n-i))<gap)
gap=abs(i-(n-i)),temp1=i;
temp2=n-temp1;
if(!temp1||!temp2)
printf("No solution\n");
else
{
//printf("%d %d\n",temp1,temp2);
int p=0,q=0;
for(int i=num;i>=1;i--)
{
//printf(":::%d\n",ans[i][temp1]);
if(ans[i][temp1]) //逆向输出,说明达到该状态第一队选择了第1种
{
for(int j=1;j<=node[i].cnt[1];j++)
aa[++p]=node[i].sa[1][j];
for(int j=1;j<=node[i].cnt[0];j++)
bb[++q]=node[i].sa[0][j];
temp1-=node[i].cnt[1]; //注意第一队要减去选择了的人数 每个连通分量必须有人选,
} //第一队选择了第0种
else
{
for(int j=1;j<=node[i].cnt[0];j++)
aa[++p]=node[i].sa[0][j];
for(int j=1;j<=node[i].cnt[1];j++)
bb[++q]=node[i].sa[1][j];
temp1-=node[i].cnt[0];
}
}
printf("%d",q);
for(int i=1;i<=q;i++)
printf(" %d",bb[i]);
putchar('\n');
printf("%d",p);
for(int i=1;i<=p;i++)
printf(" %d",aa[i]);
putchar('\n'); } }
return 0;
}

图论+dp poj 1112 Team Them Up!的更多相关文章

  1. POJ 1112 Team Them Up! 二分图判定+01背包

    题目链接: http://poj.org/problem?id=1112 Team Them Up! Time Limit: 1000MSMemory Limit: 10000K 问题描述 Your ...

  2. poj 2259 Team Queue

    Team Queue Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 2977   Accepted: 1092 Descri ...

  3. 【POJ 1112】Team Them Up!(二分图染色+DP)

    Description Your task is to divide a number of persons into two teams, in such a way, that: everyone ...

  4. 状压DP POJ 3254 Corn Fields

    题目传送门 /* 状态压缩DP:先处理硬性条件即不能种植的,然后处理左右不相邻的, 接着就是相邻两行查询所有可行的种数并累加 写错一个地方差错N久:) 详细解释:http://www.tuicool. ...

  5. 状压DP POJ 2411 Mondriaan'sDream

    题目传送门 /* 题意:一个h*w的矩阵(1<=h,w<=11),只能放1*2的模块,问完全覆盖的不同放发有多少种? 状态压缩DP第一道:dp[i][j] 代表第i行的j状态下的种数(状态 ...

  6. dp poj 1080 Human Gene Functions

    题目链接: http://poj.org/problem?id=1080 题目大意: 给两个由A.C.T.G四个字符组成的字符串,可以在两串中加入-,使得两串长度相等. 每两个字符匹配时都有个值,求怎 ...

  7. POJ 2259 - Team Queue - [队列的邻接表]

    题目链接:http://poj.org/problem?id=2259 Queues and Priority Queues are data structures which are known t ...

  8. 洛谷P3953 逛公园 [noip2017] 图论+dp

    正解:图论(最短路)+dp(记忆化搜索) 解题报告: 这题真的是个好东西! 做了这题我才发现我的dij一直是错的...但是我以前用dij做的题居然都A了?什么玄学事件啊...我哭了TT 不过其实感觉还 ...

  9. Treats for the Cows 区间DP POJ 3186

    题目来源:http://poj.org/problem?id=3186 (http://www.fjutacm.com/Problem.jsp?pid=1389) /** 题目意思: 约翰经常给产奶量 ...

随机推荐

  1. [置顶] 如何把你的笔记本电脑变成一个Wi-Fi路由器在Windows 7 & 8?

    翻译自:http://www.hakanakdag.net/windows/how-to-create-wireless-ad-hoc-internet-connection-in-windows-8 ...

  2. IE9 "CSS 因 Mime 类型不匹配而被忽略“问题

    写页面的时候在chrome,fireforks等页面上显示正常,但是换成IE9之后就完全没有样式了.IE真是个奇葩的怪胎.它的报错信息是’CSS 因 Mime 类型不匹配而被忽略‘,也就是说所有的.c ...

  3. Python中的图形库

    Python中的图形库 根据Python 2.x的官网文档的解释: Graphical User Interfaces with Tk 和 Other Graphical User Interface ...

  4. GetModuleHandle,AfxGetInstanceHandle使用区别

    当一个文件被映射到调用进程的地址空间时,GetModuleHandle函数得到其中某一模块的句柄. 使用GetModuleHandle函数格式:HMODULE GetModuleHandle( LPC ...

  5. (续)线性表之双向链表(C语言实现)

    在前文实现单向链表的基本操作下,本文实现双向链表的基本操作. 双向链表与单链表差异,是双向链表结点中有前向指针和后向指针.所以在插入和删除新结点元素时候不见要考虑后向指针还要考虑前向指针. 以下是双向 ...

  6. sort(水题)

    sort Time Limit: 6000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  7. 好用的侧边栏菜单/面板jQuery插件

    我想大家都用过一些APP应用,它们的菜单展示是以侧边栏滑动方式展现,感觉很新鲜,而现在网页设计也是如此,不少网站也效仿这样的方式来设计.使用侧边栏的好处就是可以节约空间,对于一些内容多或者喜欢简约的网 ...

  8. Echart的angularjs封装

    ehcart是百度做的数据图表,基于原生js.接口和配置都写的很好很易读,还可以用于商用. 下面正题 用原生js的话,引入echarts.js 无论是图表的样式设置,图表渲染,数据填充都是基于echa ...

  9. uilable 换行标记

    m_tipLabel.lineBreakMode = UILineBreakModeWordWrap; m_tipLabel.numberOfLines = 0; m_tipLabel.text =  ...

  10. WPF中timer的使用

    Timer控件/ System.Timers.Timer 不能用于WPF中.在WPF中,定时器为 DispatcherTimer. 使用方法如下: private DispatcherTimer ti ...