Problem Description
For  non-negative integers x and y, f(x, y) is defined as the number of different bits in the binary format of x and y. For example, f(, )=,f(, )=, f(, )=. Now given  sets of non-negative integers A and B, for each integer b in B, you should find an integer a in A such that f(a, b) is minimized. If there are more than one such integer in set A, choose the smallest one.
 
Input
The first line of the input is an integer T ( < T ≤ ), indicating the number of test cases. The first line of each test case contains  positive integers m and n ( < m, n ≤ ), indicating the numbers of integers of the  sets A and B, respectively. Then follow (m + n) lines, each of which contains a non-negative integers no larger than . The first m lines are the integers in set A and the other n lines are the integers in set B.
 
Output
For each test case you should output n lines, each of which contains the result for each query in a single line.
 
Sample Input

 
Sample Output

 
Source
 
 
 
法一:求出b[i]、a[j]的二进制数后,再比较统计
 
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#include<stdlib.h>
#include<map>
using namespace std;
#define N 106
int n,m;
int a[N];
int b[N];
int s[];
int k1; void change(int x){
memset(s,,sizeof(s));
k1=; while(x){
s[k1++]=x%;
x/=;
} }
int s1[];
int k2;
void change1(int x){
memset(s1,,sizeof(s1));
k2=; while(x){
s1[k2++]=x%;
x/=;
} }
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=;i<n;i++){
scanf("%d",&a[i]);
}
for(int i=;i<m;i++){
scanf("%d",&b[i]);
}
sort(a,a+n);
for(int i=;i<m;i++){
change(b[i]);
int minn=;
int f=;
for(int j=;j<n;j++){
change1(a[j]);
int ans=;
int q=max(k1,k2);
for(int w=;w<q;w++){
if(s[w]!=s1[w]){
ans++;
}
}
if(ans<minn){
minn=ans;
f=j;
}
}
printf("%d\n",a[f]);
}
}
return ;
}

法二:先求b[i]^a[j],再一次性统计

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<set>
#include<map>
#include<vector>
#include<algorithm>
using namespace std;
#define ll long long
#define N 50006
int a[];
int b[];
int n,m;
int s1[];
int solve(int x)
{
int k1=;
while(x)
{
s1[k1++]=x%;
x=x/;
}
int ans=;
for(int i=;i<k1;i++)
{
if(s1[i]==)
ans++;
}
return ans;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
{
scanf("%d",&a[i]);
}
for(int i=;i<m;i++)
{
scanf("%d",&b[i]);
int minn=;
int flag;
for(int j=;j<n;j++)
{
int tmp=solve(b[i]^a[j]);
//printf("---%d\n",b[i]^a[j]);
//printf("%d\n",tmp);
if(minn>tmp)
{
minn=tmp;
flag=a[j];
}
else if(minn==tmp)
{
if(flag>a[j])
{
flag=a[j];
}
}
}
printf("%d\n",flag);
}
}
return ;
}

hdu 3711 Binary Number(暴力 模拟)的更多相关文章

  1. [HDU] 3711 Binary Number [位运算]

    Binary Number Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  2. HDU 3711 Binary Number

    Binary Number Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  3. 杭州电 3711 Binary Number

    Binary Number Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  4. HDU - 1711 A - Number Sequence(kmp

    HDU - 1711 A - Number Sequence   Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1 ...

  5. HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011亚洲北京赛区网络赛)

    HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011 亚洲北京赛区网络赛题目) Eliminate Witches! Time Limit: 2000/1000 ...

  6. POJ 1013 小水题 暴力模拟

    Counterfeit Dollar Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 35774   Accepted: 11 ...

  7. hihoCoder #1871 : Heshen's Account Book-字符串暴力模拟 自闭(getline()函数) (ACM-ICPC Asia Beijing Regional Contest 2018 Reproduction B) 2018 ICPC 北京区域赛现场赛B

    P2 : Heshen's Account Book Time Limit:1000ms Case Time Limit:1000ms Memory Limit:512MB Description H ...

  8. BNU 13024 . Fi Binary Number 数位dp/fibonacci数列

    B. Fi Binary Number     A Fi-binary number is a number that contains only 0 and 1. It does not conta ...

  9. hdu 5898 odd-even number 数位DP

    传送门:hdu 5898 odd-even number 思路:数位DP,套着数位DP的模板搞一发就可以了不过要注意前导0的处理,dp[pos][pre][status][ze] pos:当前处理的位 ...

随机推荐

  1. poj 1274 The Perfect Stall(二分图匹配)

    Description Farmer John completed his new barn just last week, complete with all the latest milking ...

  2. Phoenix二级索引(Secondary Indexing)的使用

    摘要 HBase只提供了一个基于字典排序的主键索引,在查询中你只能通过行键查询或扫描全表来获取数据,使用Phoenix提供的二级索引,可以避免在查询数据时全表扫描,提高查过性能,提升查询效率   测试 ...

  3. Android UI开发详解之ActionBar .

    在Android3.0之后,Google对UI导航设计上进行了一系列的改革,其中有一个非常好用的新功能就是引入的ActionBar,他用于取代3.0之前的标题栏,并提供更为丰富的导航效果. 一.添加A ...

  4. VMware SphereESXi上安装虚拟机

    VMware SphereESXi上安装虚拟机 创建新虚拟机 此处以CentOS为例 注意:配置上传的系统文件位置及启动项

  5. _js day12

  6. css_day6

  7. CodeSmith使用总结--下拉列表和文件夹对话框属性

    上一篇有点短了,因为实在没有什么可说的,这一篇会多一点.O(∩_∩)O~ 一.下拉列表 关于如何在CodeSmith中创建一个下拉列表的属性框其实很简单,是要使用C#中的枚举就行了,看操作. 首先定义 ...

  8. css实现两端对齐~

    今天做表单时遇到让上下两个字段对齐的情况,手机号码.用户名. 然后今天在网上找了找相关方法,发现确实是没有什么好的方法解决,特别是当需要兼容的时候.找到了两个我觉得相对还不错的方法: 方法一.是在司徒 ...

  9. Android发送通知栏通知

    /** * 发送通知 * * @param message */ @SuppressWarnings("deprecation") @SuppressLint("NewA ...

  10. 用excel做一幅像素画

    开发背景 看到网上有人发教程,如何通过在excel里设置单元格颜色画一幅画,感觉手工做太复杂,就打算用程序实现一个. 开发运行环境 python 2.7 PIL xlsxwriter 用法 pytho ...