图的DFS递归和非递归
看以前写的文章:
图的BFS:http://www.cnblogs.com/youxin/p/3284016.html
DFS:http://www.cnblogs.com/youxin/archive/2012/07/28/2613362.html
递归:
参考了算法导论
int parent[50];
int color[];//0代表white,1 gray 2 black
static int time=;
int d[];//顶点v第一次被发现(并置v为gray色)
int f[];//结束检测v的邻接表(并置v为黑色)
void DFS(Graph G,int u);
void DFSTraverse(Graph G,void (*Visit)(VextexType v))
{
visitFunc=Visit;
for(int i=;i<G.vexnum;i++)
{
color[i]=;
parent[i]=-;
}
time=;
for(int i=;i<G.vexnum;i++)
{
if(color[i]==) //未访问
DFS(G,i);
}
} void DFS(Graph G,int u)
{
color[u]=;//white vextex has just been discovered
visitFunc(G.vertices[u].data);
time=time+;
d[u]=time;
ArcNode *p=G.vertices[u].firstarc;
while(p)
{
int v=p->adjvex;
if(color[v]==)
{
parent[v]=u;
DFS(G,v);
}
p=p->nextarc;
}
color[u]=;//black,it's finished
f[u]=time=time+;
}
DFSTraverse(G,visit);
cout<<endl; for(int i=;i<G.vexnum;i++)
cout<<i<<ends<<parent[i]<<endl;
cout<<endl; for(int i=;i<G.vexnum;i++)
cout<<i<<ends<<d[i]<<"----"<<f[i]<<endl;
可以看到DFS输出:
v1 v3 v7 v6 v2 v5 v8 v4。
非递归要用到栈。
void DFS2(Graph G,int u)
{ stack<int> s;
visited[u]=true;
s.push(u); while(!s.empty())
{
int v=s.top();s.pop(); visitFunc(G.vertices[v].data); ArcNode *p=G.vertices[v].firstarc;
while(p)
{
if(!visited[p->adjvex])
{
s.push(p->adjvex);
visited[p->adjvex]=true; }
p=p->nextarc;
} }
}
写非递归时千万要记住的是,进栈时一定要设置visited[i]=true(包括原顶点);不然有些节点会重复进栈。DFS和
二叉树的先序遍历是一样的,只不过二叉树只有2个分支,要要进右分支,在进左分支,而图只要是邻接点都进去,不分先后。
下面的代码写的比较烂:(不要用,用上面的)
void DFS2(Graph G,int u)
{
color[u]=;//white vextex has just been discovered
visitFunc(G.vertices[u].data);
time=time+;
d[u]=time;
stack<int> s;
ArcNode *p=G.vertices[u].firstarc;
while(p)
{
color[p->adjvex]=;
s.push(p->adjvex);
p=p->nextarc;
}
while(!s.empty())
{
int v=s.top();s.pop();
//color[v]=1;//white vextex has just been discovered,这句话可以不要,因为在进栈时已经设置了
visitFunc(G.vertices[v].data); ArcNode *p2=G.vertices[v].firstarc;
while(p2)
{
if(color[p2->adjvex]==)
{
s.push(p2->adjvex);
color[p2->adjvex]=;//每次进栈都要设置1 }
p2=p2->nextarc;
} }
}
这里的d[ ]和f【】不好写。
输出:
v1 v2 v4v8 v5 v3 v6 v7
邻接矩阵的非递归代码:
#include
#include
#define max_node 20
#define max 20000
using namespace std; int map[max_node][max_node]; void dfs(int start,int n)
{
stack s;
int i,vis[max_node],ctop;
memset(vis,,sizeof(vis));
vis[start] = ;
printf("%d ",start);
for (i = ;i <= n;i++)
if(!vis[i] && map[i][start] == )
{
vis[i] = ;
s.push(i);
}
while(!s.empty())
{
ctop = s.top();
vis[ctop] = ;
printf("%d ",s.top());
s.pop();
for (i = ;i <= n;i++)
if(!vis[i] && map[i][ctop] == )
{
vis[i] = ;
s.push(i);
}
}
} int main()
{
int s,t,n;
scanf("%d",&n);
memset(map,max,sizeof(map));
while()
{
scanf("%d %d",&s,&t);
if(s == ) break;
map[s][t] = map[t][s] = ;
}
dfs(,n);
return ;
}
输入: 输出:
图的深度优先算法的递归版本相当简洁好懂。将递归版本的算法改写成非递归版本的难度并不大,关键是要处理好如何正确的在搜索的过程中存储搜索树中的子结点,并正确的进行访问.一种实现采用了两个栈,而另一种则使用一个结点类型为队列的栈..
图的DFS递归和非递归的更多相关文章
- 回溯算法 DFS深度优先搜索 (递归与非递归实现)
回溯法是一种选优搜索法(试探法),被称为通用的解题方法,这种方法适用于解一些组合数相当大的问题.通过剪枝(约束+限界)可以大幅减少解决问题的计算量(搜索量). 基本思想 将n元问题P的状态空间E表示成 ...
- 二叉树之AVL树的平衡实现(递归与非递归)
这篇文章用来复习AVL的平衡操作,分别会介绍其旋转操作的递归与非递归实现,但是最终带有插入示例的版本会以递归呈现. 下面这张图绘制了需要旋转操作的8种情况.(我要给做这张图的兄弟一个赞)后面会给出这八 ...
- 数据结构二叉树的递归与非递归遍历之java,javascript,php实现可编译(1)java
前一段时间,学习数据结构的各种算法,概念不难理解,只是被C++的指针给弄的犯糊涂,于是用java,web,javascript,分别去实现数据结构的各种算法. 二叉树的遍历,本分享只是以二叉树中的先序 ...
- 二叉树前中后/层次遍历的递归与非递归形式(c++)
/* 二叉树前中后/层次遍历的递归与非递归形式 */ //*************** void preOrder1(BinaryTreeNode* pRoot) { if(pRoot==NULL) ...
- C语言实现 二分查找数组中的Key值(递归和非递归)
基本问题:使用二分查找的方式,对数组内的值进行匹配,如果成功,返回其下标,否则返回 -1.请使用递归和非递归两种方法说明. 非递归代码如下: #include <stdio.h> int ...
- 汉诺塔算法的递归与非递归的C以及C++源代码
汉诺塔(又称河内塔)问题其实是印度的一个古老的传说. 开天辟地的神勃拉玛(和中国的盘古差不多的神吧)在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一 个小, ...
- C实现二叉树(模块化集成,遍历的递归与非递归实现)
C实现二叉树模块化集成 实验源码介绍(源代码的总体介绍):header.h : 头文件链栈,循环队列,二叉树的结构声明和相关函数的声明.LinkStack.c : 链栈的相关操作函数定义.Queue. ...
- 二叉树3种递归和非递归遍历(Java)
import java.util.Stack; //二叉树3种递归和非递归遍历(Java) public class Traverse { /******************一二进制树的定义*** ...
- 简单迷宫算法(递归与非递归C++实现)
假定迷宫如下:1代表墙,0代表道路,起点在(1,1),终点(11,9)(PS:下标从0开始计算). 现在寻求一条路径能从起点到达终点(非最短). 有两种解法:递归与非递归. 递归算法思路: 要用递归, ...
- JAVA递归、非递归遍历二叉树(转)
原文链接: JAVA递归.非递归遍历二叉树 import java.util.Stack; import java.util.HashMap; public class BinTree { priva ...
随机推荐
- HDU 1976 prime path
题意:给你2个数n m.从n变成m最少须要改变多少次. 当中: 1.n m 都是4位数 2.每次仅仅能改变n的一个位数(个位.十位.百位.千位),且每次改变后后的新数为素数 思路:搜索的变形题,这 ...
- SGU 319 Kalevich Strikes Back(线段树扫描线)
题目大意: n个矩形,将一个大矩形分成 n+1 块.矩形之间不重合,可是包括.求这n+1个矩形的面积 思路分析: 用线段树记录他们之间的父子关系.然后dfs 计算面积. 当给出的矩形上边的时候,就要记 ...
- nhibernate 更新 SqlDateTime 溢出问题
最近在用nhibernate,更新实体 时遇到一个SqlDateTime 溢出问题 费力调了N久,开始以为是实体的日期格式属性未赋值,但是调试发现哪怕实体对应的日期类型属性赋值了,也会报同样的错误. ...
- c/c++中宏定义##连接符 和#符的使用
C语言中如何使用宏C(和C++)中的宏(Macro)属于编译器预处理的范畴,属于编译期概念(而非运行期概念).下面对常遇到的宏的使用问题做了简单总结.关于#和##在C语言的宏中,#的功能是将其后面的宏 ...
- git版本工具(团队开发常用)
1.创建一个版本库 mkdir repository //创建一个文件夹 git init //把目录编程git可以管理的仓库 2.提交文件到版本库 git add test.tx ...
- URAL 1036(dp+高精度)
Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Status Pract ...
- C#复习一( Twenty Days)
今天开始将要复习最近所学的一些C#知识.下面就来总结一下今天所复习的内容,以此来巩固我对C#知识的掌握.今天主要以举几个程序为例. 首先还是要注意代码的规范: –注释//,/**/,/// –骆驼 ...
- ztree树形插件
在开发项目中需要用到树插件,近期研究了几款树插件,好记性不如烂笔头 ,写下来 以后好查 MzTreeView(梅花雪) 很经典的树形菜单脚本控件 菜单树展示加载速度快 支持1w条以上大数据 缺点-- ...
- webservice实例
前言:朋友们开始以下教程前,请先看第五大点的注意事项,以避免不必要的重复操作. 本文引自:http://www.iteye.com/topic/1135747 一.准备工作(以下为本实例使用工具) 1 ...
- python函数cmp()
cmp(x, y) 中文说明:比较两个对象x和y,如果x < y ,返回负数:x == y, 返回0:x > y,返回正数. 版本:该函数只有在python2中可用,而且在python2所 ...