kruskal算法求最小生成树(jungle roads的kruskal解法)
注意:
注意数组越界问题(提交出现runtimeError代表数组越界)
刚开始提交的时候,边集中边的数目和点集中点的数目用的同一个宏定义,但是宏定义是按照点的最大数定义的,所以提交的时候出现了数组越界问题,以后需要注意啦。
Description
The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads between villages some years ago. But the jungle overtakes roads relentlessly, so the large road network is too expensive to maintain. The Council of Elders must choose to stop maintaining some roads. The map above on the left shows all the roads in use now and the cost in aacms per month to maintain them. Of course there needs to be some way to get between all the villages on maintained roads, even if the route is not as short as before. The Chief Elder would like to tell the Council of Elders what would be the smallest amount they could spend in aacms per month to maintain roads that would connect all the villages. The villages are labeled A through I in the maps above. The map on the right shows the roads that could be maintained most cheaply, for 216 aacms per month. Your task is to write a program that will solve such problems.
Input
Output
Sample Input
9
A 2 B 12 I 25
B 3 C 10 H 40 I 8
C 2 D 18 G 55
D 1 E 44
E 2 F 60 G 38
F 0
G 1 H 35
H 1 I 35
3
A 2 B 10 C 40
B 1 C 20
0
Sample Output
216
30
//数组越界会出现runtimeerror的错误,注意边的数目和点的数目不一样,用一个宏定义的时候注意是否会出现数组越界问题 /*
题意:
多组案例
每组案例第一行输入一个数字n
下面n-1行
每行的第一个数据都是一个字符start,字符从A往后依次排列
每行的第二个数据是一个数字num,表示有num个节点与该行第一个字符表示的节点相连
每行接下来的数据是num组end,cost,表示start到end的花费为cost
具体输入输出看案例就会懂
解法:Kruskal算法
*/
#include <stdio.h>
#include <algorithm>
#include <stdlib.h>
#include <iostream>
using namespace std;
const int MAXN=;
/*边结构*/
typedef struct{
int start;//道路起点
int end;//道路终点
double value;//道路权值
}Edge;
Edge road[]; /*节点集合*/
int node[MAXN];
/*寻根函数*/
int Find_set(int n){
if(node[n]==-) return n;
return node[n] == n ? node[n] : Find_set(node[n]);
//return node[n]=Find_set(node[n]);
}
/*排序中的比较函数*/
bool cmp(Edge a,Edge b){
if(a.value<b.value) return true;
return false;
}
/*合并:将棵树合并成一棵树*/
bool Merge(int a,int b){
int r1=Find_set(a);
int r2=Find_set(b);
if(r1==r2) return false;
if(r1<r2) node[r2]=r1;
if(r2<r1) node[r1]=r2;
return true;
}
/*克鲁斯卡尔算法*/
int Kruskal(int N,int M){ //N 顶点数 M 边数
int num=;
int cost=;
sort(road,road+M,cmp);
for(int i=;i<M;i++){
if(Merge(road[i].start,road[i].end)){
num++;
cost+=road[i].value;
}
if(num==N-) break;
}
if(num!=N-) return -; //不能产生最小生成树
else return cost;
}
int main()
{
int n;
//freopen("input.txt", "r", stdin);
while(scanf("%d", &n) != EOF)
{
if(n == )
break;
for(int i = ; i < n; i++)
node[i] = i;
char s, e;
int num, cost, k = ;
for(int i = ; i < n-; i++)
{
cin >> s >> num;
for(int j = ; j < num; j++, k++)
{
cin >> e >> cost;
road[k].start = s - 'A';
road[k].end = e - 'A';
road[k].value = cost;
}
}
sort(road, road+k, cmp);
int ret = Kruskal(n, k);
printf("%d\n", ret);
}
return ;
}
kruskal算法求最小生成树(jungle roads的kruskal解法)的更多相关文章
- 利用Kruskal算法求最小生成树解决聪明的猴子问题 -- 数据结构
题目:聪明的猴子 链接:https://ac.nowcoder.com/acm/problem/19964 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个 ...
- 克鲁斯卡尔(Kruskal)算法求最小生成树
/* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #inc ...
- Prim算法和Kruskal算法求最小生成树
Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小 ...
- Prime算法 与 Kruskal算法求最小生成树模板
算法原理参考链接 ==> UESTC算法讲堂——最小生成树 关于两种算法的复杂度分析 ==> http://blog.csdn.net/haskei/article/details/531 ...
- Kruskal算法求最小生成树
Kruskal算法是根据权来筛选节点,也是采用贪心算法. /// Kruskal ///初始化每个节点为独立的点,他的祖先为自己本身 void made(int n) { ; i<=n; i++ ...
- 859. Kruskal算法求最小生成树(模板)
给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数. 求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible. 给定一张边带权的无向图G=(V, E),其中V表示 ...
- Kruskal算法求最小生成树 笔记与思路整理
整理一下前一段时间的最小生成树的算法.(其实是刚弄明白 Kruskal其实算是一种贪心算法.先将边按权值排序,每次选一条没选过的权值最小边加入树,若加入后成环就跳过. 先贴张图做个示例. (可视化均来 ...
- Kruskal算法求最小生成树(POJ2485)
题目链接:http://poj.org/problem?id=2485 #include <iostream> #include <stdio.h> #include < ...
- AcWing 859. Kruskal算法求最小生成树 稠密图
//稠密图 #include <cstring> #include <iostream> #include <algorithm> using namespace ...
随机推荐
- 分布式拒绝服务攻击(DDoS)原理及防范【转】
DDoS攻击概念 DoS的攻击方式有很多种,最基本的DoS攻击就是利用合理的服务请求来占用过多的服务资源,从而使合法用户无法得到服务的响应. DDoS攻击手段是在传统的DoS攻击基础之上产生的一类攻击 ...
- 关于MySQL的Myisam和Innodb的一些比较总结
总结一下MySQL的Myisam和Innodb引擎的一些差别,权当复习了. 首先二者在文件构成上: Myisam会存储三个文件:.frm 存储表结构,.MYD存储表的数据,.MYI文件存储表的索引:所 ...
- js中 ===与==
js里面,==比较的是参数的值,不会比较参数的类型,===需要先比较参数的类型是否一致,然后才会去比较值比如,if(3 == "3")这个会返回true,if(3 === &quo ...
- 自学XML DOM的几个例子
XML DOM定义了如何获取.修改.添加和删除XML文件中结点的接口,极大方便了开发者对XML文件的使用.XML DOM教程和手册请转:http://www.w3school.com.cn/xmldo ...
- IIS Express中如何配置支持json
今天在使用i18next的时候,由于要加载一个json的文件,但是在vs2013中一直加载不成功呢,经过上网查资料得知原来要配置iis express才能支持json文件的加载. 文件的默认位置在:C ...
- Oracle自动执行任务(存储过程)
Oracle自动执行任务(存储过程) SQL> variable job number;SQL> begin2 dbms_job.submit(:job,'存储过程名;',sysdate, ...
- C#:占位符的例子
在c#中有两种方式可以输出多个字符. static void Main() { string c=Console.ReadLine(); string d=Console.ReadLine(); Co ...
- SPRING中事务的配置
采用这种配置策略,完全可以避免增量式配置,所有的事务代理由系统自动创建.容器中的目标bean自动消失,避免需要使用嵌套bean来保证目标bean不可被访问.这 种配置方式依赖于Spring提供的bea ...
- JAVA 年轻代收集器 第九节
JAVA 年轻代收集器 第九节 继续上一章所讲的,STW即GC时候的停顿时间,他会暂停我们程序中的所有线程.如果STW所用的时间长而且次数多的话,那么我们整个系统稳定性以及可用性将大大降低. 因此我 ...
- java/php/c#版rsa签名以及验签实现
本文为转载,请转载请注明地址: 原文地址为 http://xw-z1985.iteye.com/blog/1837376 在开放平台领域,需要给isv提供sdk,签名是Sdk中需要提供的 ...