kruskal算法求最小生成树(jungle roads的kruskal解法)
注意:
注意数组越界问题(提交出现runtimeError代表数组越界)
刚开始提交的时候,边集中边的数目和点集中点的数目用的同一个宏定义,但是宏定义是按照点的最大数定义的,所以提交的时候出现了数组越界问题,以后需要注意啦。
Description
The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads between villages some years ago. But the jungle overtakes roads relentlessly, so the large road network is too expensive to maintain. The Council of Elders must choose to stop maintaining some roads. The map above on the left shows all the roads in use now and the cost in aacms per month to maintain them. Of course there needs to be some way to get between all the villages on maintained roads, even if the route is not as short as before. The Chief Elder would like to tell the Council of Elders what would be the smallest amount they could spend in aacms per month to maintain roads that would connect all the villages. The villages are labeled A through I in the maps above. The map on the right shows the roads that could be maintained most cheaply, for 216 aacms per month. Your task is to write a program that will solve such problems.
Input
Output
Sample Input
9
A 2 B 12 I 25
B 3 C 10 H 40 I 8
C 2 D 18 G 55
D 1 E 44
E 2 F 60 G 38
F 0
G 1 H 35
H 1 I 35
3
A 2 B 10 C 40
B 1 C 20
0
Sample Output
216
30
//数组越界会出现runtimeerror的错误,注意边的数目和点的数目不一样,用一个宏定义的时候注意是否会出现数组越界问题 /*
题意:
多组案例
每组案例第一行输入一个数字n
下面n-1行
每行的第一个数据都是一个字符start,字符从A往后依次排列
每行的第二个数据是一个数字num,表示有num个节点与该行第一个字符表示的节点相连
每行接下来的数据是num组end,cost,表示start到end的花费为cost
具体输入输出看案例就会懂
解法:Kruskal算法
*/
#include <stdio.h>
#include <algorithm>
#include <stdlib.h>
#include <iostream>
using namespace std;
const int MAXN=;
/*边结构*/
typedef struct{
int start;//道路起点
int end;//道路终点
double value;//道路权值
}Edge;
Edge road[]; /*节点集合*/
int node[MAXN];
/*寻根函数*/
int Find_set(int n){
if(node[n]==-) return n;
return node[n] == n ? node[n] : Find_set(node[n]);
//return node[n]=Find_set(node[n]);
}
/*排序中的比较函数*/
bool cmp(Edge a,Edge b){
if(a.value<b.value) return true;
return false;
}
/*合并:将棵树合并成一棵树*/
bool Merge(int a,int b){
int r1=Find_set(a);
int r2=Find_set(b);
if(r1==r2) return false;
if(r1<r2) node[r2]=r1;
if(r2<r1) node[r1]=r2;
return true;
}
/*克鲁斯卡尔算法*/
int Kruskal(int N,int M){ //N 顶点数 M 边数
int num=;
int cost=;
sort(road,road+M,cmp);
for(int i=;i<M;i++){
if(Merge(road[i].start,road[i].end)){
num++;
cost+=road[i].value;
}
if(num==N-) break;
}
if(num!=N-) return -; //不能产生最小生成树
else return cost;
}
int main()
{
int n;
//freopen("input.txt", "r", stdin);
while(scanf("%d", &n) != EOF)
{
if(n == )
break;
for(int i = ; i < n; i++)
node[i] = i;
char s, e;
int num, cost, k = ;
for(int i = ; i < n-; i++)
{
cin >> s >> num;
for(int j = ; j < num; j++, k++)
{
cin >> e >> cost;
road[k].start = s - 'A';
road[k].end = e - 'A';
road[k].value = cost;
}
}
sort(road, road+k, cmp);
int ret = Kruskal(n, k);
printf("%d\n", ret);
}
return ;
}
kruskal算法求最小生成树(jungle roads的kruskal解法)的更多相关文章
- 利用Kruskal算法求最小生成树解决聪明的猴子问题 -- 数据结构
题目:聪明的猴子 链接:https://ac.nowcoder.com/acm/problem/19964 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个 ...
- 克鲁斯卡尔(Kruskal)算法求最小生成树
/* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #inc ...
- Prim算法和Kruskal算法求最小生成树
Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小 ...
- Prime算法 与 Kruskal算法求最小生成树模板
算法原理参考链接 ==> UESTC算法讲堂——最小生成树 关于两种算法的复杂度分析 ==> http://blog.csdn.net/haskei/article/details/531 ...
- Kruskal算法求最小生成树
Kruskal算法是根据权来筛选节点,也是采用贪心算法. /// Kruskal ///初始化每个节点为独立的点,他的祖先为自己本身 void made(int n) { ; i<=n; i++ ...
- 859. Kruskal算法求最小生成树(模板)
给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数. 求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible. 给定一张边带权的无向图G=(V, E),其中V表示 ...
- Kruskal算法求最小生成树 笔记与思路整理
整理一下前一段时间的最小生成树的算法.(其实是刚弄明白 Kruskal其实算是一种贪心算法.先将边按权值排序,每次选一条没选过的权值最小边加入树,若加入后成环就跳过. 先贴张图做个示例. (可视化均来 ...
- Kruskal算法求最小生成树(POJ2485)
题目链接:http://poj.org/problem?id=2485 #include <iostream> #include <stdio.h> #include < ...
- AcWing 859. Kruskal算法求最小生成树 稠密图
//稠密图 #include <cstring> #include <iostream> #include <algorithm> using namespace ...
随机推荐
- How to Send an Email Using UTL_SMTP with Authenticated Mail Server. (文档 ID 885522.1)
APPLIES TO: PL/SQL - Version 9.2.0.1 to 12.1.0.1 [Release 9.2 to 12.1]Information in this document a ...
- [C++空间分配]new运算符、operator new、placement new的区别于联系
先科普一下: 1. new的执行过程: (1)通过operator new申请内存 (2)使用placement new调用构造函数(内置类型忽略此步) (3)返回内存指针 2. new和malloc ...
- Java数组复制
System提供了一个静态方法arraycopy(),我们可以使用它来实现数组之间的复制.其函数原型是: public static void arraycopy(Object src, int sr ...
- Java提高学习之Object(2)
Equality 问:euqals()函数是用来做什么的? 答:equals()函数可以用来检查一个对象与调用这个equals()的这个对象是否相等. 问:为什么不用“==”运算符来判断两个对象是否相 ...
- 微软TTS示例
#include "sphelper.h" #include "sapi.h" #pragma comment(lib, "sapi.lib" ...
- php Mysql 和Mysqli数据库函数整合
PHP Mysql和Mysqli数据库函数整合 服务器如果支持mysqli函数将优先mysqli函数进行数据库操作 否则将调用mysql函数进行数据库操作 用法SQL::connect(host,us ...
- javascirpt语法
1.区分大小写 ECMAScript中的一切(变量.函数名和操作符)都区分大小写,而函数名不能使用typeof,因为它是一个关键字,但typeof则完全可以是一个有效的函数名. 2.标识符 指变量.函 ...
- Android ORM SQL Top 5
If you are developing an Android application, you will likely need to store data somewhere. You may ...
- JS的匿名函数和递归应用
今天有项目需要用到JS的递归,开始按照php的实现方法,发现不行,后来只能使用arguments.callee. 简单的例子,如下 var act = 'if(num <= 1){return ...
- warning: control reaches end of non-void function
用gcc编译一个程序的时候出现这样的警告: warning: control reaches end of non-void function 它的意思是:控制到达非void函数的结尾.就是说你的一些 ...