题目链接

容斥原理求第k个与n互质的数。

#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const int mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
vector<int> v;
void init(int n) {
v.clear();
for(int i = ; i*i<=n; i++) {
if(n%i==) {
v.pb(i);
}
while(n%i==)
n/=i;
}
if(n!=)
v.pb(n);
}
ll solve(ll x) {
int len = v.size();
ll ret = ;
for(int i = ; i<(<<len); i++) {
ll cnt = , ans = ;
for(int j = ; j<len; j++) {
if((<<j)&i) {
cnt++;
ans *= v[j];
}
}
if(cnt&) {
ret += x/ans;
} else {
ret -= x/ans;
}
}
return x-ret;
}
int main()
{
int n, m;
while(cin>>n>>m) {
init(n);
ll l = , r = 1LL<<, ans;
while(r>=l) {
ll mid = (l+r)/;
ll ret = solve(mid);
if(ret>=m)
r = mid-1;else
l = mid+;
}
cout<<l<<endl;
}
return ;
}

poj 2773 Happy 2006 容斥原理+二分的更多相关文章

  1. poj 2773 Happy 2006 - 二分答案 - 容斥原理

    Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11161   Accepted: 3893 Description Two ...

  2. POJ 2773 Happy 2006#素数筛选+容斥原理+二分

    http://poj.org/problem?id=2773 说实话这道题..一点都不Happy好吗 似乎还可以用欧拉函数来解这道题,但正好刚学了容斥原理和二分,就用这个解法吧. 题解:要求输出[1, ...

  3. [poj 2773] Happy 2006 解题报告 (二分答案+容斥原理)

    题目链接:http://poj.org/problem?id=2773 题目大意: 给出两个数m,k,要求求出从1开始与m互质的第k个数 题解: #include<algorithm> # ...

  4. POJ 2773 Happy 2006(容斥原理+二分)

    Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 10827   Accepted: 3764 Descr ...

  5. POJ 2773 Happy 2006 数学题

    题目地址:http://poj.org/problem?id=2773 因为k可能大于m,利用gcd(m+k,m)=gcd(k,m)=gcd(m,k)的性质,最后可以转化为计算在[1,m]范围内的个数 ...

  6. poj 2773 Happy 2006

    // 题意 :给你两个数 m(10^6),k(10^8) 求第k个和m互质的数是什么这题主要需要知道这样的结论gcd(x,n)=1 <==> gcd(x+n,n)=1证明 假设 gcd(x ...

  7. POJ 2773 Happy 2006(欧几里德算法)

    题意:给出一个数m,让我们找到第k个与m互质的数. 方法:这题有两种方法,一种是欧拉函数+容斥原理,但代码量较大,另一种办法是欧几里德算法,比较容易理解,但是效率很低. 我这里使用欧几里德算法,欧几里 ...

  8. POJ 2773 Happy 2006【GCD/欧拉函数】

    根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...

  9. Happy 2006 POJ - 2773 容斥原理+二分

    题意: 找到第k个与m互质的数 题解: 容斥原理求区间(1到r)里面跟n互质的个数时间复杂度O(sqrt(n))- 二分复杂度也是O(log(n)) 容斥原理+二分这个r 代码: 1 #include ...

随机推荐

  1. hdu2222之AC自动机入门

    Keywords Search Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  2. Android中SharedPreferences函数具体解释

    Android平台提供了一个SharedPreferences类,它是一个轻量级应用程序内部轻量级的存储方案,特别适合用于保存软件配置參数,比方boolean,int,float,long,Strin ...

  3. Effective C++ Item 36 绝不又一次定义继承而来的 non-virtual 函数

    本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie 经验:绝对不要又一次定义继承而来的 non-virtual 函数 --> Item 7 ...

  4. CSS3立体文字最佳实践

    前端开发whqet,csdn,王海庆,whqet,前端开发专家 上一篇的<纯CSS3文字效果推荐>文章里面推荐了8款纯css实现的文字效果,当中3d文字效果最为流行,限于篇幅只展示了其3D ...

  5. SQL Server索引进阶:第十五级,索引的最佳实践

    在本文中我们将推荐14条贯穿本系列的规则,这些规则帮助你为数据库创建最好的索引结构. 格式来自于<Framework Design Guidelines>.每条推荐用四个词来总结:Do做, ...

  6. gridview中使用href调用javascript

    传递参数(多个)可用以下两种方法: 方法一: <asp:TemplateField HeaderText="列名1"> <ItemTemplate> < ...

  7. Html5 自定义数据属性

    html5 可以为元素添加自定义属性,但是要添加前缀data-.(下面这个例子中的自定义属性的命名,其实是不规范的,不应该包含大写字符,例如:data-myName 应改命名为:data-myname ...

  8. [vc]如何对radio按钮分组

    如何使用多组? 多组和一组是一样的使用,只要搞清楚哪个是哪一组的就行了.再为对话框添加Radio3和Radio4.很简单,先为这些RadioButton排个顺序,就是排列他们的TABORDER.在对话 ...

  9. Android 中Java和JavaScript交互入门

    如何实现JavaScript 和java 交互 实现Java和js交互十分便捷.通常只需要以下几步. WebView开启JavaScript脚本执行 WebView设置供JavaScript调用的交互 ...

  10. “use strict”对js的影响

    一:全局变量显示声明 在正常模式下,如果一个变量没有声明就赋值,默认是全局变量,严格模式禁止用这种方法.全局变量必须显示声明. ; i++) { function f2() { } // 语法错误 } ...