python 重要模块
1,使用字典的特殊字符串替换,基于字典的字符串格式化
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAApwAAADhCAIAAADqCvLEAAAXBUlEQVR4nO3dS5LjuBGAYZ7Nt3H5AHUHr3rrC9SiD2Bfx46J0AlqTy80rUEjH0iAAAlC/xcdEywIBJMPMZmUxNn+BQAApvF4PP6o9PHx8be///Pf/9u3HQAATOOZ1OP9v76+SOoAAMzoldS/Y0jqAABMqltS/9z0HF/bDgAA2vSs1D+3TU3Vte2qbdu2bUsnspey9qy/fMlvjywXAICp9L/9Pq5kT9OqnJB/qmnY6h8ch7wOAJiWk9S3bWtJ6vuwkj1LtK8Jp/K2xil2tl4iqQMApmUl9VfWm6tSl9NOlo0k4GClXjUmAACXUJN6VvpO8Zn63impt91+98cEAGAGMqnL+9lpXr/y2+/qbfNd3IF3Gp12a/y0RZ0LAIBJ3Ol36mRTAAAct0nqVMkAAPhuk9QBAICPpA4AwCJI6gAALOKZ1L9qkNQBAJjR4/H4qEdSBwBgOo/HY9/37+/vqv+S1AEAmM7j8ajN6N/f315SV390dpdfovWKs2GcbJZt67nRLlyvqZYrx3lu59e/QSGNjr+vhk1x8oEx+nhuWKOGQygez8FxRu+g5vGtGc8/onz3On92rtSdN8ktTLXzSOrdl1u84hy0gqfF30tDSjvTCcfz8Yu241f2zdSLv6Gaxz+eMk449u51/uxcqVftofTaNjuxZpe9spvfP5tFfUm9GOx15e5UVHIoPxhra/jrW4ynTdt6HdmP1nKzAZvjlzHIka3jR0biHHJdOPFHtv8ePg4j+0XtX3U8yHZruXIWVZfjwXopEqT6JrUOnjOPE2uJ1npFVkFGXjW+FarfLrtF4vfb1cM4GOTx4+3g+1SOeVmlrq6A7OmcLOTZxxnWiuT8nWd1cFqct33tZjwovl4d96O13L3ffqmajrRMu/0j/YPvR7V/bTy17eqfViRFTueqAIrHldV+2nEi95EfQEN71fhOi98e7Nkc/yYSvB/kweOt1/s01bNS7/h2Sv9Za5XuA9nfWYTVf7SGJCEj9A8CZ7RxnBi67MfRrIU27C/n1XGqtr/V3z/ZOfuxGIM/zu5u//MPhnTpVjDFd6XTuF90nBSTR3C/tB0Pzq6MbCWftfEj61U8L52gy/s0dVKlHu/pnFzUCWeJkXfaDCdfv8UPuHgQnKA2SagTl5y41Uhku3xJbdkvWpfaN3/b/nIW2jC+5fgpvpeqE0VVUt+vOE6C+7e4/ZvP29bs45J6pPPlSb3X+zR10mfq8ZWRl1RWh+NJXb1ytIY6vo/bkro/48GkPm69Ou5Hf9Hj9ksa4aCkfv72r+0fOTnWjm+N4/Q/83huCCByqpEvnXmcWPsouN8j+7H2OCwOGNR8vEXOS8VFH98v1mht23O/sFJ/xSQjSxs3cWsinZDj+I3W+MFQj1BXqhi/nHc3tpszvh/VQZH1UtcxuB8jS+8V/6tFjh88tPbKTXry9m/ov9vr2zx+1eBVu/j48VAbUtaYLd2J/8zjxD8z+PvR6e/vfX98ZxENuz4YpxWPtS7B5R7U/D6ygjzpd+qYUJcjEpmTMxBuiuMEx1lJfeeJcu+JM0VfDWUl3hDHCY4o3sboX6kDAIBLtFfq/yWpAwAGk19c4CMJR3ulTlIHAGAqVOoAACyCSh0AgEVQqQMAsIiTKvXa7zX0+hKEM85bfc/ihO154VDBwd9qjwN4T+dV6rMl9ckHb3DCFcxdtqc11Gy7DAD66lmp+z82kI3+kwi7sCKxnim4azcV1Dj9ZxDKpajT8ml/6uMMnfH9IP3toK6sr7g91fCsUNVB/Jdk5FXHD0kdwNq6VerFs6rf4cykbr2U5aFiYLWZUp3XSvD+cq2LAMu4pG4FVowteOUR3A6RoZx2AFhDt0o9q7SCJ3Gr8wmK+Smd7lIOWkldnXC2ZzxxniB40dOc1Hf3pkgD8jqAhY2q1CW/w/mn2nhSP9KnOK+T1C1vldQb7pQ4yOgA1tazUvd1ud/esawPJvWGpFVM6v59/i5J/bTtGbn9Hr9zo85bHL8tWgBYT3Ol/o//uF+Us25fZyf62tvvXU7KfjzWtJWZIiubvap2Syca4rTiiWyKg7KQ1PGDu77YGNwvTqgAsLDmSl1J6qN1yUAYauYdNHNsANBFz0p9NE7Kc2qomAEAI9ypUgcAAI47VeoAAMBBpQ4AwCKo1AEAWASVOgAAi6BSBwBgEVTqh2y//Nb4c9t+bunEScFoy1UjBAAsqVul/mmkjdr2e1GT5VRJ/c+XltjaAABfz0r9c9vUVF3brnqVm0plnLD6y5f89shydzupZxO7n3F/bq9/srM1lDqO7OzECQBYTP/P1MeV7GlalRPyz0garh3H6fZXo5Fcs7Rt9ck6Zwne6u+MacUJAFjMkM/UB5XsWaJ9TTiVtzVOsbP1UiSpm/FrCXj/vfJ2sn6a461i3Vw0SR0A3sDNKnU57aSrSCYLVurWmMeTevEWukzq8SW2xQkAuKnbfKa+d0rqbbffi7NHFJN6sFKPL7EtTgDATd3p2+/qbfOs3bot73d2xk9b4nf4leCTu+Xq1+LUu+t7kullf26/AwBSd/qd+oSZacKQVHeJEwBwxG2eKKfW1pebM6rU/BECAHq5U6UOAAAct6nUAQCAj0odAIBFUKkDALAIKnUAABZBpQ4AwCI6V+ryl1Pb9tu/uHGdAQBYUudKXU2uaeOg7EtSBwBgeKW+G0k9LdyzIl4t69NG2YGkDgDAlZW6n5X9FpnyAQB4c2d8+936TL1jUgcAAGd8+z29za62y5fUllcjGR0AAOmkSt2fVr8YT1IHAKDK8Erd/1Jb9t23bJZ4sgcAAPd7ohxJHQAA1Z2eKNfwBBsAAN7H/Sp1AACgulOlDgAAHFTqAAAsgkodAIBFUKkDALAIKnUAABZBpX7I9stvjT+37eeWTpwUTOVyr4qzlhqnuuUB4M11q9Q/jdNrbfu9qEmFpN6XEydJHQBSPSv1z21TU3Vtu+pVlimVccLqL1/y2yPL3e2knk3sfmb6ub3+yc7WUOo4srPD6p8O7i+3Ic5sOxxcL5I6AKT6f6Y+rmRP06qckH9G0nDtOE63vxrdZFnsk3XOEqfV3xnTYmViP+AucSrpuWm9SOoAkBrymfqgkj1LtK8Jp/K2xil2tl6KJHUzfjd3yiJYncg6d79t7gzYK05rEQ3rRVIHgNTNKnU57ZzWI2f8YKVujXk8qRdvNctkGV9iAyfjqn82xKm+5FTqXrQkdQBI3OYz9b1TUm+7/V6cPaKY1IMVcHyJaZzBUCOfZx+Ms5jUqdQBoM2dvv2u3jbP2q3b8n5nZ/y0JX6HXwn+92+fZXlRvmR9Vq32KS+98uJDHbxLnE7w6mgd1wsAlnen36lPeAafMCQpXqbfzqrrBQBtbvNEObW2vtycUWUmD6/NLbY8AJzsTpU6AABw3KZSBwAAPip1AAAWQaUOAMAiqNQBAFgElToAAIvoV6lvm/JvtI5LOTIUP6wazdo7tXtt6GHJYQDgav0q9dcZTU4M1XEpsyX1uySJa3d07dKPR9srEgDobcBn6ptWwe+7Ur5bNX3aWOxvDd42vjOXRUa4G1c2xXjSl2rveZywndPx/eAjoQaXm75qjVZF9u+4X5wgSfkAxhvwmbp10vS7OVmw2F8m5obxnXl9/kXMq0MkHhlelaHb2enWvLmCy/WXcjCp990vJHUAlxpfqastr3a1Eop0jieh4Php/yrFrOAn9SxOZ+TaSOTgR7azjLktzsj2ry2Cq1gXner61u4XMjeAS51VqRe7RZJNpL2qUleHOj+pW+29knq8s7/QoUl9tkrdmYukDmBW11XqsiRSOwcrS79/vLL3l2UF4AfsJ/VIPMGQjiT1+EVPfLp5uWdW6keOE79b1k6+BzBe70rdv4cpz4Cvxux86veXcx0fX+0Qoa5sFltxudYS45FEtrOz6GJ/uWrWileFaq2stb/im85fbmSvNewXkjqAS/FEuR44X2PnMABwPZ4o1wNnc+wcBgCuR6UOAMAiqNQBAFgElToAAIugUgcAYBFU6gAALIJKfS3pb7sBAG/muko9e7hH8DkeXR7ioT7hZLS2ZVlzOe3ZhHwpG6T2oTHO0uOcEUbvkV7jT3jZ1LArAazl0ko9e6pXw1zNyy0mpxGnvLYx4xFaGd16fFtkXjnO3iklnJ9Uqq5gTnb+pUY8/QO4j0s/U39lCNlelW4bKk5rqF1kLCuTyWeLpsNajyOV4xTjD26H2jsfzp8NtwEaBPe7cyVRu9+t5daqjTMymhxERmutb3YoOsNmc1nrZa0agOldXak31Mrx5OQs1+pcTPMySftjWsky0t8Jye8ZuThoWO7opO4st2G71S63VjDO5kGyPG2tr3M1Zk2rLc3HIYCZTFmpp68W24sVajyYyBKD01bFI6eL8V+V1Hd3mxzXsF57zXarXW6tYJzO7P5uyiYiSd2JIZLUi9tz6PEAoIerK/WGV5tLtIhiOlSX7sRQPMlGzv6R9tqLg8srs+NJve9yj49TldSLg5yf1GtDBTCfCSr12leHJvVdK0eqknrtSbZXUi+OGU/qDQVZ2yzB9hOSepf4G5K6XPSRpO4MdSSpU6AD93FdpV68yyc71LYfDE8d3+8ZCXIX695lfZ1sFxnHWp2gqrlq16t2u9Uut0v8TpzBMdVB9l1fXzWedK70pay97bgCcAc8US7AP69Ncta78Czc8VrqEnePHwB+4YlyJX6NTj7Yp7msaXb3+AHgFyp1AAAWQaUOAMAiqNQBAFgElToAAIugUgcAYBFU6gAALIJK/RjnYSD76T+Arl3uVXHW8p+gAgD4hUr9GOf36ztJvRMnzpnDBoDT3adS98/s1jMvd62kizwmM7LcvfSU9eA46rM55SNC/Titzg6rf/bY0b5xBvdLcL1I6gCQuFWlnqWTbEL+GUnDteNEKkU/WQaXKy8CZJaVcTpRBeOsXfG2OOP7xYrTagGAN3afSn23T/RO5W2NU+zs5DmrW1v8u1iFrEM24axvF86AveKM7Jfa6xIAwP0qdTntJ6H4mFcl9eKdA5ksh3IyrvpnQ5z+7Q0/jMhQAPCulqjUI/2txqmSerACbtBc+46Is7hfqNQBoMndKnX13qx1W9i69xsZRzZm069Xa4OX46gvZS37rvQflPyK2+dInJHtv4fzOkkdABK3rdQnMWFIUjz3386q6wUATR6Pxx+VPj4+rvtJ22wn8TmjykweXptbbHkAONczqcf7f319XZTUAQCA65XUv2NI6gAATIqkDgDAIkjqAAAsgqQOAMAiSOoAACyiX1L3H9ISlz2c5Ba/WZJBXhV2r+XeYrPvsYcGAsDb6Fqptz1qTeo1zmlI6lchqQNAYkxSP/j41expo2l/tbPzDFerUe2fvhoXzCvOA1CtZ6nuxiZ1bmMMTerZLnPiaYi/dj86cTrtALC0AUldZizrT2faOoM7yUYNxhlfNS6pZ4M7F0BZ5yxBxjfvEf72VFck+7Mh/tr9qMbptwPA0nondb8MlRWYM32wLAteTBwXH614EeNn/ayQtS59BnEW1Ct+/0qran1J6gDe0vjb7/7pNVJ9trXfJak7la46cVW6Cm78I/HX7kcHSR3AWxr/RbmDST1YyRUbg0m9ofbtmNSDlW6D4zV9MXnvh+Mv7kcqdQBwjflJ2y7O787tU5ktrNu51j1ba/Da/vvIpJ4u0Vo1Nbx0IrIKR4IMroK1nY/EH9mPe3gHkdQBvKUJHj6zwPl38lU4Xqbfy1utLAAkLk3qVbXmzCZfhcnD6+7d1hcAfpmgUgcAAD2Q1AEAWARJHQCARZDUAQBYBEkdAIBFkNQBAFjE+kn9x/aj11Db77+V2n5u288tnXi1F8Ypdeir1+JmW69a52+H7MDornl8a8bRAVepjcR6P5r9b/7Tx7vHj0G6JfVP4wirbb9QMf1HkvqrxRvnhkl9wvWqdcl2GL1Nmse3ZowPONuqVSX153v51nnx1sFjnJ6V+ue2qam6tl31Y/vxTLqvCbVdvpSlan8cdZYn+RbKErlsV8nO1pno2ZJdMWRJJcsfWX8/pLR/qLKpzOjpyH6cDeuVbbdpt4MVpBOnFY/VWDu+vxbBVOpstHi7v9+tYJztU7cKNUlx27bXdUB+cZ+w+suX/PbIcmtXAW+i/+33cSV7mm7VvG7NFR/HWXo8qb8agyfT7DSndlPPg+kJ0T8bFtNb8Dy4h9dLTcBOt4b1iqTtGbZDJPEcaa8a32nx24M9m+OXCT4S9pGk/mdnLVkWe8oJ+WckDdeO43QDnoZ8pj6oZLcSsJ+M1aTeME70nV8q+PzzlFWZOVk/q9WsIskJNXISrF0vv2eX9XLS0rTbobh/rXis7dAwvjpjsT3Y099f8f0eXEQwVGUQURNHZpHTm6D2VxftdLZeIqmj6GaVenHan+vIOLXvn/hJs6rScpJfQzDxDsWewaTecb2sM35DVPEOxZ7BAGo3V/P2tGYfl9Tb4own9cji4uLvayupHxk5WKlbY5LUId3mM/X93KQu56q7qLcTUkNSD1a0xXicFvmnE/yRbNpxvYphyLW4ZDu07V+n/5HxrTiL7X7PqouPI5V67VWa7/VxdbxzNl2b1NtuvxdnB17u9O139Ytszhfc1JfSP4PfrXsaVKmnNxI3cWdSvpS17L+fDTfjzqR6crQ6O8HH1ytbRHGVa9fLX1k52iXbwdqzTpyR9XLmimwHaxH+prBWNhKnFY+/3/f6/dWgqlJXb9qrt9+de/KRcWRjNl0bPN7HnX6n3vEX5216vYW6nIzGLa75dHnyetViO9zLbJtxtgw6WzyYxG2SulNDn+Z9kvo5CzoZ2+FeptqMam19ramCwTxuk9QBAICPpA5Al32A3fGTbACDkNQBAFgESR0AgEWQ1AEAWARJHQCARXRL6tv227+40b/LyMavDW9Oa6wFAKCvnpV6mmZmTjkzxxa3xloAADoantTTmjKrL9WyPm2M1P1ZZ2soGae8r6DeaXDG90OKjyNX2RknWwtruaR8AHhDZ1TqfgXvt0SSU5YI4+M7C1LzcSSe2nGCCyquV7E/AGB5nZO6VXyr05GWYFKvHd8P0hkzfpGhFuty2lpuNkjVepHRAeA9DanUDyb1V2P8dnfV+OrgvZJ67ThOUq9aUNWrAIAlnXr7PVhx7nZSL44w6Pa70y14v90aZ8R9/sjsAID19P9JW9qSvbqLvFV1e1ltTGfPhlLHVzvI/pHxnSDl+kbi3LWN5oQU35gAgHcw78NngmX6hUbEM9UKAgDuZcakXlW7X6hXPFTYAIAuZkzqAACgAUkdAIBFPJP6Vw2SOgAAM3o8Hh/1SOoAAEznWalXIakDADCj12fqQdx+BwBgUnxRDgCARXRL6p/Gj6xr2wEAQJuelfrntqmpurYdAAA06H/7nZIdAIBLDPlMnZIdAIDzyaS+aajUAQCYnVqpWxmdz9QBAJiXdftdzeheUqdABwDgWs5n6jKjRz9TBwAA5+PhMwAALIKkDgDAIkjqAAAsgqQOAMAinkn9q8ZfSf0BAABm8lHvz6QerO4BALiRqkq3l33fr1ouSR0AsKyvr6/zF/pM6pcsl6QOAFgWSR0AgEWQ1AEAWMQzuVrPS28gh5ItaVK3/v8rzuy18aTLJakDAJaVJtfjo2W5XG35TpK6+mpx5Kp4SOoAgHdRm9TjybU2qdcutzivDICkDgBYmZXUi3fFHelcbUldLrctjG+SOgDgfTiVupqY49LZs+sDP6n7FwQNS381ktQBACs7IanLlhOS+rdxMUFSBwAsS03q2Y3rtk++5ezBL8r1SupyRpI6AGBl2U/apNerz/6Rr6dln4jLFvUnbXKQrIMcNrKCVOoAgHfBw2cAAFgESR0AgEWQ1AEAWMT+Zp5J/f8jwRuYee5oZQAAAABJRU5ErkJggg==" alt="" />
圆括号中的信息是键名,值将从字典中得到并替换为字符串,需在圆括号后面指定插入的数据类型;
person[数字序 for tulpper() list[] or keyName for dict{}]
2,string
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAogAAADDCAIAAACOK3drAAAWz0lEQVR4nO2dy5HlunJFaZu8UciA8kGjnl4XrgFP7kgTucE3qNunWUDmRiYIEuA5a0VHBw+YSCQ+xCZY/Gz/+r/9P/7zv//6668d3pJts/8BAMCSbAgzAADAOiDMAAAAC4EwAwAALATCDAAAsBCPFOZf269Rrraft0Ftf2/b39tx45Xe8NMyGMuo4larV5b726EYGMPp9u9lvDrgFFPG7ZkmDZpl/Xv2367i3rR93Ns988D7taenF67/8F23Spi/HC/Z9Ik0JTwizK8U5eeBwrxgvbJMaYer26Tbv5hQri76Tv8d43ZWvVLp2TGm7bOdvtQ88JT2TAnzt9YEtbmxYv7aNlNus+kmv7Zf38L52jDT612F3Go/ZpZv6jYqxLhON6mNvd56nXPVKzCz6Npeh3S0P3+mbBZaBzyqXkW7LdsOXpAiTi8eLzHrX9ciOKuKRoun6373grlh3B5ji9fLi7PwZvrXlcpWQSPKvWL8e4fqp7WnN8hdt0NWzC+uWzofJdPUZi9X3I8oPS7Mr8TghFgPstrMnMuOk5qe0ZpDMz4Wg/WqB6s266hX5JBboR0iB+eZ9JR/kaLTg5bd8Rf9Hgx7eH8Vlt3tKQaqdziIuvTtittnnezJ9qy3P7A9s8L8j/G2NRU6+jfmi5bOnohqQTWFucNP9KpC68QzOHCPrvRMcZzXanuv0CLL8HppyyH1EtKybDs0+9eLx2uHDv9mxmZ60FL3V7zfg0VEghxyPOrjq/aj+6W53QyymeUiP93tefx/pz2bnn8TMp6+Ym5u61xn/MQvLPxjH+4zbyIwbYSAdQQTN2haRiRQmHXUy5u1O6KKGzQtgwFkm6u7Pb3s1wlzX5xxYY4U1x2YF0A2khuEZJSKdLgSWeLCnPL/9u3pugrozsy/Me/3CnOdKyXMQlQ6JoItsMLICnNz3IvgzyjiwHo1w6hrMaUd+vpX2J/x78XZTNeWqROISL973q7uLy+AM0Li9VFwOx6kV2LEfrcY2J4Dhfm57ZkleAvY5LuyzZuzxE1b5q7jz+D9Yt9ctGLeqjsajmO33lWk7D/H+uZcGvKGmmksgo/XqyiiWeVsvXRla29T2sHrWRFnpF4iV6QdvCJ0U3iVjcTpxaP7fb+9v7wgg/XS9W36N1O62yHbKV5Xmo0mdpnpdc/GQ6rT98e2ZwcDVsxXM/CJ5D6y2uz6GXQ+dVFx3ePp5nploR2exTv115kiZg0n2vMpzBRmsZa9jc8R5nsKuhna4Vk8vb9GLZsmCvPNGZtuH92e17H963+f9+YvAACAdwVhBvgg6j+YDfmzGQAMBGEGAABYCIQZAABgIRBmAACAhUCYAQAAFuJhwjzq6SYAAIA1QZgBAAAWQgnz61MY9TcxtgOefb1Lp0fK3dFmAAB4axor5qM01hv1z4iUZv0IMwAAgDejLcz19lZh2hd+msbeLoQZAAA+h05hdt1FvpsRWzF7PhFmAAB4Y7b/+p/LhbnvUnYzOwAAwPvRFub6EnSR7l3i1sbC/zElfrUcAADgDUismFdgtXgAAADGooTZXOPOZalgAAAAhtNYMQMAAMCdIMwAAAALgTADAAAsBMIMAACwEAgzAADAQiDMAAAAC6Efl/rxL+H04meaCv/Z8NZkYC2yfuouzva7Zz/LDwDAc2m+YMTeXo2VY4tzvhZDzqJqUUx5eP2c5QcA4NH0CPNx6vdWWoWTV2JEOQpjz1UdZ72uMldawr8OKe6nrrLwU9TCKzcuSCctEWYAgIl0rpj1SlqnRCbWQszi/kVBpqZG4sn6CRaUXapeJMzmCUfW2xA/CDMAwB4RZm8RbG5HUoITfda/DlL4zApP048QGL0C1ivmOH0SPn2lizADAOzxFfNJYX4lBmfVPuG/SJizfoIC0ywotfe85XRBRZgBAPbzl7KDK79XorcoDJbbTAleStVmOmNKmLdB18wjcXqWwr5DmONXJu7xAwDwZoQelzqmFHv3SntSl2rNxGP2wpXp3zSo7SP+RZB1fSNx7lajiZDON6aXxRNyYdxXbtyP6Pq4HwCAN+PWF4wEZ+eJXBHPFRWc1W6r9RcAwPtxkzCnll8TGRXP1Su8We22Wn8BALwfvJITAABgIRBmAACAhUCYAQAAFgJhBgAAWAiEGQAAYCEQZgAAgIVYQ5i/PuspnI2njgAAwEEJ85ejH9n0FRl0KoDEAgDAWBor5q9tM+U2m+7ytf3zr0jZD9p53HjtKpT15cdzddx1NI4p9PYTkfhKPxrUfmrnxw3Tvt4LAADvR+hS9uVLZ1Nld0ekTcH2vHnSm1kx12Lp7TqmCxGtdxV6bxaEKgMAfALRvzFfu3T2lFVrcFCYIyW2MFfGuxRm7U2kmMLc9AkAAO/Bqivm5oaX6NnoEjMEV8xBD8InwgwA8IHM/hvz72z2z3uEuSXSwUvZEcH29jaFmUvZAAAfwuy7suv7sOrtvfobc+rmL+8mr/DNX95NXsXeiL25q77Dy9vVDBUAAJ7OGs8xx/mwJ56PIMwAAJ/Ao4Q584DTeyBW6gAA8JY8SpgBAADeHYQZAABgIRBmAACAhUCYAQAAFgJhBgAAWAiEGQAAYCEQ5gsx3kby97b9vR03bookWa5p/739+pcq/c44F+SeehWWA9tk4PgZEk9d0EX2JxnY7x2Rxw/V83Fe3bDd/r2MS80YRnt+6PeYr8d88vjRwrz/nPqviB9h7rMXfrrznoknMn5G0SFXw2MQZQ3s9/Nnw56HUSde8fA66PYvan110XH/CWHeL35XdvEeynqX+arL417T3kuPlCvizL7rwxPmYmMPnCabyw7hyvRTGx9rF4mzLqsIqa6CF0xR5bq44JEg4qwbah/Unl7wnr2uV7z9I+PE9OPVWtcrGL+JHj+RcR6vb7D9zY5OxVOke+V6x0jZRJnjznUSCMbs9Cv61zsovDhFSKIxU/51peKVjcSv083hV0fyZ2Pu16WK90IXG/VPezQ79kE/F71UKy7Me6Vtnk1hXHS2Zy987iOEWWxHUoJxmuhRvjsNW+ftaM9mNS9qf+XKTxEdFGmuIf3i+c/G09G/pn02nmy6sNlHCHPqp0hslhu0r9tWB9aRnvIvUnR60LI7/s0X6T8bc7/HXIjla0OsgD0/TWNvV1OYO1bMWbHXurJVJ1/mRmEcH3apOE3nYt5vpgyPUzgc1Z7iUL+6/UUMZoruLOHzzvgj7Ryc+ET/NmPQfopdhc/rOt2MVsdZG4vE68I7bsfbs68fRReIo7WvajpOLx6xYTifvmKut4WqpURxlDD3kXKbnYDMjUuPumBsZhhijrh69hfpZ9ozMustIszNwKYLc4dwmvbZfg/69zg/3WdJDbB1hDkYdnc/Nv1fJ8x9cQ4Q5qu/xzxEmPsuZWuf5xkrzJEzr76jLv5Xcy/OIpKLhDnx1/3AAXyyPZsHqtkOtqsR7d9MERlPCvP5+EW79R0XutBuYT4pPKW3TLt1FBQZoqFCM8fdmf6KtH92/DQdupXxLbvH2zBhvuGubO/6sHnpWFzfjvipE4vtsaRmq1f/bdXVj3pXkbJXurhVl1Z0nKkDT8xrRVTNeFJnEtkTHbPQIe0pKmV6a9aro/0jIXkDyWsf4V/HHwk+GP9eDaS4vdcOZ/ynnMcPuj1/QhMvukgUQzQYZzxCz79uf2Gve037F0V0dFkwTi8ery5ucXOfY75otboI712781w0i8Ft0C/vDf07i5nCfN1qFRbnotN2uBn65b2hf2fBm78AAAAWAmEGAICPpv7DfOqS3vh4EGYAAIB1QJgBAAAWAmEGAABYCIQZAABgITqF2Xya+x5yj9lk3/Yg7SfeC3AzY9uto/STHjpKNOPncREAuJ/nCfOeejHFVIEx/Q/3eQYvnk9rNxE/2gwAN9MWZvMdIMd3nhXp3vvJdnPWC7xKzQjJWst6RXtZ7Mq26lUn6np5lRLtU9h7ZZmhptpfPBgg2q1vPHhheCE1GzNeX68Ng+MEYQaAmxkpzN7kvldzcdDA/Nk0uEKYRSS6Xl48wk8zryfS2fbX8XgGfePBE0K7iNgfEYL1LWy0K4QZAKYz+OYvsSist8UqTSyS6oxFliEVMdGReItR7SGeLs4AioVgsP1FuUMInqB0C/MeG28RPxq0GQDuZKQwZydiIcypglJ7zxAX5jM2zbxCmCORv40w912ZUBGbWVBlALiXzkvZtmXy0mXkWmuzoOZP10n++xlBYe4QpKaQmO0zVpiHt1tkPMSviJh5m/6bnpsgzABwMyOFeT9cWtwPc2WdWMzLta6IS5R1umfcCLX3+75e8PW2pzqRShV7TbO66VJxevE0muLEeBD1ajZFM7HZ/jeMEwCA8yz0gpGO1Ux/WXxu8nbu7N9RMEgA4H4mC3PHCmZMuUy4tzCrfwEAnstCK2YAAABAmAEAABYCYQYAAFgIhBkAAGAhEGYAAICFQJgBAAAWAmEu2X7zI9F/G0ZPEcF3bOX923FaNbqC9JvU7goMAOBBKGH+cmbMbPqzMHXCFLz9+pdmeP5FuhnnfvGj2x0Six4DAJg0Vsxf22bKbTbdLvv3VG6sUA949vUunR4pd/eFudg4/hSvioy8V7JILxbltX/93kozTq9eJltFPONwSwCATyN0Kfu6pfNx3q836p8RKc36EWZ/En1hrnd5Yuml1KKr/Zs+dQz7LVrYp/2XhgQA8Diif2O+aOlciOVrQ6yAPT9NY29XRJjd+P0vJom3UWrl9gT45CX0ZVfMaDMAwJH5K+Z6W8zUkUk8uGL2fA4R5ngu/XOKMHeDMAMAnGfm35j3QcLcdym7mT3CcGEWN5edFOlZwtz86wPCDABwZPJd2d71UvNSqri+HfFTJxbbr73R4APfmQ7et1W4avo3UxrR3nJXttcFIst1UQEAPJHZn31cb16eHtJFj2BNrxcAAESYKcxrrpmmRCXuFBvgfMl2BgAAE978BQAAsBAIMwAAwEIgzAAAAAuBMAMAACwEwgwAALAQCDMAAMBCIMwl9lsy/M8p9hTxdt9jTr3gBQAABHyPucR+TdVQYU4E84TvMddirNMBAEDA95jVa5z/JDrfXoy8krPw431vyl7sPuF7zAgzAMBA5n9dqp7HxYQekdKsn4h+eIIX+YhF6rOPpgaLsoJx7je+K9srEWEGAIjA95gHfF3K+/iEWB8Hf0757CMrZgCAicxfMdfbYgaPTO7BFbPnc4gwR3JFfk4R5pOeEWYAgDPwPea1hLm+lJ3aVoUizAAAT4DvMRt7c1X4qcqvRPNSdjN9/ynw3s1lZkojTh6XAgB4AnyPuWR6SBc9jjW9XgAAEIHvMZdMiUrcKTbA+ZLtDAAAJrz5CwAAYCEQZgAAgIVAmAEAABYCYQYAAFgIhBkAAGAhEGaYxp3f6bqTd63Xp0E/wiwQ5gQXPXG0WVxUynC3dSk/forPUF72eFg3Q4LxXgVzXTyzmrFZ7oLxx8saOD5vboe+fhlSune886xmlvlv/spmGcJSA+X4arNi46KCBlrqjO6BGn596bOIf2HsonKD6VeXO8vPqLJmjc9R/XjpiaD2gDAPYf73mONrxI5lpWnvOXn99HaVqvPT3izX3CuiFfHXhRa5miVG/O+yX3TjG/4zQhVZXhfvK/WKyL6wxTP2XqEq/Ij0SL2C8RTevLOfePC6PUUuXa8z8Tej9a5M6Hi6+7EOvhiNK/Rj7ceMM1jrZr3qUF1XaHOGhb4uNZxaVJrlahH1hK3Ya4r9yYAL/4UA17u8aIM/I7rb9L/rA9WfsHReU5uPc65n30RnTGmGSGzWKxKAp0m1WSTmwklcw7xyR8XvFRpx6zXIyX6st1frRxGb9hYc/7o6XhEIc4qFvsccMRaLuWaWSLnap5YiTxHPCLNZ38hGM1qzCB1zs/07jr3IQb47Z+jeRmHcLcyFq0StwpOXjjN+ohDZjsfcp5FXxC/KNdutTzh1QfXP4qxltX48huTtjaQ3zydyBxfCnOGdV8yirKcIszY7KcwnV8wdBn8sT5x9R4Q5GIYXVcdeL6T6Z5/sBX2K7SZPEeasnw5h1nlrYe4OOBJ/MGYvzmY8HXFG0kszhDnDit9jHkVQeOIxdAizuVgPnhbcKcxixeydcDTjV5aBtYU58W2xFXMwDFF686fnoa9e2XgiK0WxrYu7QZiD8UcKTQlzcJGn+3GgMF/Rj83YTgpzx3GxI8xJJt+Vvf+WhCu6rXndtVYjz97cdfypd9WuRLS63Hr7WEQqfs9bKp5ib10vQX2Ev+apYmY0dxUpR4e1TTOS2j7r5Ey96glap5uVrf2bKboFdqs9g1ni9YrHn4o2Pn60/1cuL9Hr4un9WFRw1HiLGDeiQpgz8Bzz5dw5IqeP/lQAKbV7EPfU6+mtt3789OMops9LjwNhvgSxrLyh0NtKNGOYWPrb07FSWYqnxz+KT2sHpoUsCDMAAMBCIMwAAAALgTADAAAsBMIMAACwEAgzAADAQiDMAAAAC/FIYf61/Rrl6rb7+K94kGniQwiLP//ghbd42AAA+wpv/rqUpoTXb7a6LpgO5+l3aV1sfz7jPSDMAPBcZr4r+9f261s4Xxtmer2rkFvtx8zyTep9kyZmFrF9zBL0o+0j8evYmq7MWtfGhXPhp7Cvd+n0SLl1kM10AIBFmPx1qaNkmtrs5Yr7EaXHZ/NI9kIz6u1aV1J+mgEI+2ZswkmklELvm34iUpr10wxbpwMALMLk7zF7IqoF1RTmDj8nhXn3V5YdAtz0Y5beTBHxePZbRarc4kTEW+x6cTaNg3VBmAHgocxfMTe3da4zfs4Ls5c3K8wRP9qyz2dkxZwt16tvqgjhB2EGgPdm8veY7xTmOldQYF4/9dQvVo2mh5PCk4q/GYOIp+YiYfbaAWEGgI9i8l3Z5s1Z4qYtc9fxZ/B+sW/0hVwz3bTU9oWNeam26SdedDCebv+7/zfmoB/PeaRSXuTm3t3CSwcAWITJzzEPfCK5D6bpPmrhnBWJCaoMAM9lpjCLtextMFP30VxzzwVhBoDn8sg3fwEAALwrCDMAAMBCIMwAAAALgTADAAAsBMIMAACwEAgzAADAQihh3rYf/xJOBz2TMstPR5XjbrXBED8DCZbljZPU+OlrnztbAwDgBhor5uOU98Tpb+JZxaXO7+yLZlm1GOv0M2UNzAUAsCY9wnyUukL29LLJMzDLNc36FvEXWb5qFM97bITam6jvXjW76UdHa3ZWM577hbmOVve4HideOnIOAGvSuWLWK2md0i2THRN9h2XHpdeUhgkhFxX0NDVYaMSt6TDVFHWQIgwdqmkcFOaBJwoAAPfTFmZv5WFuR1LOCGrfcqevxLjg9WlkSphF3qxwNv1kBWzsijm1Mo4UVJ9nsFwGgJWJrphPCvMrcaCgXrRijud6ijBn/cwVZmF5Xpiz8QAA3M/ZS9nm4uMiYe6+FOnFc3Jlf6cwR1a6wUJTwhxZXA4XZs/4pDB3jx8AgDsJPS51TCn27j/nbu+SaZ29EZblRzuP+yni97IEPe8/myKVpVm1IkvTTzbaZjy731Cmf7ORg/3lBbAH2kekN40BAJbi1heMMBuegdYDAPgEbhJmlil9sMIDAPg0eCUnAADAQiDMAAAAC4EwAwAALATCDAAAsBAIMwAAwEIgzAAAAAuBMAMAACyEEuYv5+HZbDoAAAAEaayYv7bNlNtsOgAAAEQIXcpm6QwAAHAP0b8xs3QGAAC4AVbMAAAAC8HfmAEAABaCu7IBAAAWgueYAQAAFgJhBgAAWAiEGQAAYCEQZgAAgIVAmAEAABbiH2H+fwAAAFiAfwPxtA2yCrFfwAAAAABJRU5ErkJggg==" alt="" />
Ruiy tips
python模块
使用模块为Python添加功能,通过模块同操作系统及其文件进行交互.
Options and arguments corresponding environment variables;
program passed in as string (terminates option list)
debug output from parser (PYTHONDEBUG = x)
ignore environment variables
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAApMAAADYCAIAAAA4dP8sAAAXkklEQVR4nO3dT47rSHLHcZ5tbuPxAd4dvKptX8CLdwD7FsbsZtXADAbQ2h6UvaUXqqdmMSMif5FM/knq+0GjoaKSkcGUiqHQk1jTX/9v/o+/z3/6l3/77bffZgAAcDGPx2Oe58/Pz+f/Jyo3AABX9ng8XmV7nmcqNwAAl3afnnuapmma4i3Luw5JChcy/WLetTECABwm13P/cM5Z2e07KU+pnGTx4tXsbDHmSQXgXOme+8c0mfU4u92zPJO+/r/8cf5+6izHr6IF8VcbZ79xF0/u2Tir8eZxLY9aWQcl1akgHpqZknkIW+KvNpbBvam93F5bgtm9lMTBAHCYxn/n3qn5Ns/as1URp+81bHbOs95J1hw5FRVxNUyvQHocJe3UOoh5psT5m3mm8tmyPuaCZ9OgcgMYSPu/c+/RfFcL7epG9dScqtzmdGY/Jx5CWWD0RtAcH99IJdlwXOZg5XirwcuUzJjeRu+xi/cS79o4GAC6u27PbW4/vnIraWfjNFem4Eawe3dmelvqYq/1mcOVoXIDuIdr/Tt3tmKVTV4cMNh+WOXO9pTL8c2vYDaK45uPRTw+Lr3N6+NtCULFs5zywggAYpf7bHn5lunyx+WN4N5VnPJEX52iGkfPPz4KfXywDtkks6rxveTN8cHG5vWpxi+HVVNNxQGAw9zn+9wX8Z6n9XOPWpy9V5Lv+RADuA6uodbTfl3vZZ11yA3vMWxP9Q0fXwAXRM8NAMBI6LnTJsfZeQEA3gI9NwAAI6HnBgBgJPTcAACMhJ4bAICR0HPjvXT8Vrd45ZaOk45r+jlNP6fljdXtPeJXdnE+W1ru3pZndq/sFL2WLp7CPIouUxth/U/78hu0YvXcfxvp73PziMZGufzIYXl2PBDjpM+z0eFV1nMrtxdK3KhktdPghvFZZ8Wnciusntuv3POBf597+VC9fjS3m6/Usl/ZUuY1p15llZp3Kuh5BvMqi6AcrxJnrDzLjas8V8HLvcrxevxq/t7xerJxVuO9pSsHB+ugprros8vtZblddnvmXWL8KKV85Q7yVOp9/PKiS+X21s3MM3g5tfrPjB/Mu7zhLVGqcgfb31Ou53455m+FmSedcnsqzpZ5U4kp82Y1zJtdn9Q6D5enHnBVEVc1bBaeGPF2M/+G5082jpJ2ah3UPP3KXd5lVpdgSxA/SilZueM8zR3jN97FSuaJpxMnastHDJjN/2s7lVuQ7rlfDvj73N4ZWTlTL/oB9UWDuUtbRRHnnQrV8eaPQZyG/Ku3qy6bp1hylgkvb1R31086Zs7Z54MXpwylZFiOj2/oSUb5W++cH/AvuHP2Ke3kGfSUs3Uge/xLQTVgXGiVYXrAObM+dnAqt2Cknrt6WwzbPK8yPjVvVlARxV3iOOLtcfO8fuX2c7cpcZqfz8GNYPeU0Su3vlcQp5erVe42VG7Ftf6de+OZWjlzzb/ahWCi1JnO7FGCfbcQ5w12Mcc3r3OZyZXzjAOa8waV22w3L1i5uzyfU69gzJVx8xcqovJueTSFk88olVtfz6D3VXI4+N1yNziVW3C5z5ZPC8r25V3mYPH0uhy8uhHnswwYz9uFOa+eqjle2e7FmZ0zywXznK2HvoyzynxyHuLVgXvHZW4vg1TjeKrrszoKfXywDnGSStpfI4uPNZlvtJp7iVME+XTPsyxg8faN+cepmi93vGS82w3HNcuvSNxDoHIL2v+d+2C9HjbxhJiN2TfgifPePubNfv+vdjh7/H5tEeRzSp7Zqna19VTsUbmHW4S9Nf4798H0FkQJtT3IHPZ8u9p13r7rfM0873QKOOUZGLtUMnOYz/Grl+225+utp6fhvQQjiP+IjLIOhxmm5wYAAPMoPTfwtibH2XkBOA09NwAAI6HnBgBgJPTcAACMhJ4bAICRXLXn/jF9/XdtfFCos8s/4gBwustdQ+25W8te+6A2P911He56XABu7FrXLf+j1S577mDjnOjRze/VvH40t5vfw/G+nJOKHydpjlfie4dQDn5tUeLH6yDm4zIfwdXjK0itv3hc5l1KMgCwB6Pn/tf/PO1vhb1GV7aYxVtQnoKXt71K1hZQjB9ELseL8av5lJVs+X8vvplkKp8686F/baw90L0e3+rDSuUGcCKj51Yq97xr852t3DKxMu1UucWY1X29ttKLU473bkyFOH52fF380G+r3NXbq33LgwKAK7hFzy0bvXL36omDyq3kE2+s3hW5TOUOwgLAudI9977/zv1rn8qWkyp3eQbvUrnNxq5aucWe2By/sXJ7ryS88QmnVm7lFdLMu+UAzpbruXf/bHnbJ9QyXyHz3gUN3h2tji8LpLfRjOYV3XjeeVFCvGS8qc0I8XGl1iEI4jIfyuWP2qNcTb7Mp9we5584KADYQfu/c9/MWedirwxQG/piPQHcRuO/c99MrjvsPfWl8rkl1hPAndBzAwAwEnpuAABGQs8NAMBI6LkBABgJPTcAACOh5wYAYCTv2nN7F/Q46e+CD/GFpemnmuT0cwoG63Eu62aPVxChIUh2rxs8H4CD0XMv7FmwhzjXx3qdjoc4U7/b49U3CJUb2NX79dzB34HOXEjVvDrm60f9aprVS3Iq8ZUkl7t42yvR8qdjs/3Knanf7++yn/J4xUHKx/G5xWuvzcFmnCBP/UiBd/OuPbd5rr/j3/nuKFu5X+PL87ga5f3+LntHvSp3+ThWH1BzS/b5QOUGPEXP/b9U7rr4TF29nQrYHHPu3cMZ8ReN16qd8m7nXONvxKUCNsecz3u8so9jML7cK4gDoE3Rc1O5BaNUghNRubMxr8mr3PpeQRwAbei5axstGytBeQa/XyW4U+V+h8fLc2Ll3vLuAnBv79dzx38HetsnnoLty7u88auzfLDRi3YRyzdRg88xSe77d9mvL3gcg3fXq9vV2UdbLuAw79pz74ZzzVh4vI7BO+RAR+/Xc+9pxL7qnfF4HWPr+y4AvqPnBgBgJPTcAACMhJ4bAICR0HMDADASem4AAEZCzw0AwEjoud/Cx/TRK9T6yiTWn4Eqr2sd/KmoVbReeWLlTt/LUq/C1vuQz5pXNMpD3JZnx6M7+GuKe5z36LnxTbXGi5W7egPHu/Hiu39wbOdDPmtezygPcVueXY5u1yU67PlAzz2Sj+njWVlfN8zt5V2rehzHMXd5Mi4RGpZk7/rV5YvQ4K9O6RfO9Jr74FKsXnDzrYJUnOXgYIm8412NDy4pWh5vENxMPliHIMkyVPV2Kn4wRZB8eZc+76w9H7bMqzyOW87yXY63Yz7ZPOPnoTnYjONN6j1kXdZhy/NBD/VEzz2YZU01i7e3lx4nmL1L5Q52MZ/uQTRzRjO+9+th/hjsmI2z+o2ND8GbKFiHeD3L+Kt9q/HFUF5ubXkGcfQtDfNW12HjvOLjuEWv492pYJvx9edh9nziTR1v2bIObc/DhvMePfdgvCobV1yzcjfEyV4oNH6O6r+Z+u9PUDmq6YlnWG/eMtXquSnOpxpfzM0bsHqFkVrqYB1St+P43sudVAXV562uw8Z5g/jZ8rDr86FXPtk8N67/TpVbiVkd3/28R889mHer3Pq9cfxdK3c1zsbKLeazpXLHO1ZDpXK7cuXODshW7uapRadU7gbZ9fEG3LVyV++l5x7MkZW73Ovgyh3/WJ2xS+VWeiNv/MbKnc1HOfG1nTGrqZoxz6rcvV7ZKANS81K547luVrn152HDeY+eezDmJ8iCT5aZdy1/FD/U9pSq3JP/MZDy3kl4ty01qTlvGae6fS6qkTJ+NawMlcrfjB+vpxfZG5la6njwxjyXceZixcSHoNyy8dB6zdvreR4n33a8ysF2kV0fcbs+rxinbR2OeT7Qcw+m4zez21z8b2LudKLpHhPAdm/7u0nPPZKgGz7MlSt3xy5h154DwHbv/BtKzw0AwEjouQEAGAk9NwAAI6HnBgBgJPTcAACMhJ4bAICR0HN/WX1T/o/tF/4SFADgDdFzf6FyAwCG0KHnXta815bVvcElAzde5a68sFw8PjiKMvmvLRRvAMBl9Om5y9q5quWvYasbHbevyrY5Pj4EbzCVGwBwHX3+nbsse6urqzf00EqPHlT0tovF20dH5QYAXEa3ntu8kX2nuhq2bftGVG4AwHXs3nPH473dg+1ezx304uXsqdJO5QYAXEeHntv8jJj3xnWwMdjuzVJuF0PJ6zPPVG4AwJXc6vvc4ifRaLgBAOMa/vvczd/+UuNTuQEAV3KrnhsAgNsbvucGAOCt0HMDADASem4AAEZCzw0AwEjouQEAGAk991v4mD56hVp9Tc68PM5h9K8CHp/bnXhfvNx7VVPz8ii/BBevPGuVUs+f4HF/q0c5OF56bnxTrfGXqtwl8YK70B22dBuvdajvsl/kKzv9EHr9GYsjnbho8dT03CP5mD6elfV1w9xe3rWqx3Ecc5en8ro0wTXnvavbzvJr5/KSt+ZVb81JzTKw/eWFd7Xd6vgt69AxTyUfc7B3Vzzv6jDjvbbM+7rXy8d8qphBzLBxHD2aGSp4+Vudd3Ye32BS85co+yuZPd4ueQbPB/H3a8vzv8vxNsxrTv14PP6xQOW+umVNNYu3t5ceJ5hdrNzlL+Tytn7GjMOKW8p5UwkEySinuS27N/MmEvMJhgUTBQH1bNvmVfIx99IfAnOkvlDV8eb6e+Or66xka4Zqzr86fmOe5vbs06/h+b/lZLXf7938q3L/MZjKfXFelY0rrlm5G+KI14KNn6lKhNX48jWsF035tVfOOOZr3rbk23IQ80nlKebTpXIvf4zzF4Mrd5UJmPOWY7yJ4hmzlWyVkrdv8+ObyjaYV8x/e6XfXrm9fILHujq+S+UOtm//vZsXlfvz85N3ywdA5Q4mCuJvyaF5x47rsGXebD7dK3dMP1Nnd2mrcPrItuM1x3uVW0+mOiCO1vDy5QqVW5w6NZ7Kjf6OrNzlXmNV7i6/jcF0W85cR1ZurxLsWrmVniwevGvlTqU3O+uz0/MhW7m7VMRs5VYWsDp+rMrd/PhSufHtQ2TmRvPDaKu7lj+KH2p70v9y2lT7OEm23Smf1l6oYF7z3pRs/h3XoUuecT7ebf0QVrtnczaDp+ZVtretub6e1Qh6HOW4quOD9XwNEBbgW6jX7bbxqTyzzwdxncvxs/Uo64/vrD0uweKsbgdTU7kH0/Gb2W34s6cQtRXI93TuWvFIDYfKPZKgGz4MlRuBVA+KpxNXjAdrUFRuAABGQuUGAGAkVG4AAEZC5QYAYCRUbgAARkLlBgBgJI2V+2rfItg7n9QVDFLfsvAua8CXrwAApmF67hNfKzRMTeUGAOwkXbmD7rMsQuUV5la346vZmRu9q8p5+ZRxZrktVq665+2o5LMcaexC8QYAFPq8W25WR/Mub5gSti2fYF79UrTZu1L5eKGo3ACAUv/KPYfV2ttlud3rcXfNRw+u3OW9MZC61iCVGwBQulblPqbnFmMqw9p6bhGVGwBQOu7dcqWHbnjXvZpPsC+VGwAwnPZPqAWf2DLfKy5veJ/YKseXd+n5BElW37gO3uXutT2ancoNACjs8q2wthYTS5RtAIBpXbn/8t+NlTvbUCJG5QYAmLpVbgAAcAAqNwAAI6FyAwAwEio3AAAjoXIDADASKjeAkfz+62sXv/P9C7wrKveYfjjnrB/T13/XsPt32/odaZlqr+83ZuNc8HuV3hc+U6nal03MP0O2V+7fpyne901eE1TX4c3tuj4bg1O5b2TPgu2dYW/zvXMqt2fXdcg+f7Jl2xv2bhWLdYidsj5U7ndidtWvjXLPPS2sNi5vlIOV7cu7tswbCdZheUNjTpptKIOr/+pxGsan8gkuzbu8UQ5WLkVczqv8mYDgReHqrmebsvwvXoRg8PNHc7sZWZ/3NcB8kRHkU25fhgrG77oO+iuk4BCWG9vWR5lXPGQ9+Xmf9TGDZ+NTucdkliW5VpVVdnn79eNquxJKn0ict6I85GXNbl2Qr41yBTWrYEOctvF6PkFi4rA41bZ10Cv33LXnDkKZp+9qzDL4qkp5cYL4Zp7ZfIIxXeJnjyu7Pr3m1UMtt++6PmUhF+NTuce0Z+Wu3g5C6RM1zGUwK3dwr0Oc0etB935/O5g3lU9caJVhesB4x2/DMu8ZdqzcwRhzi95jeef6VW/n9Zpebht70+r2VUXJHnK1dwxKYHV9lHlHWR/llU01Nyr3mKjcT8dWbnf3Qf5levTK3XbGrG5XKrd+7xxWJiWgUrlT+Yj7Zl8VVeeqViZxfaoTmT9Wt2f3bV6fbIWmct/XqZVbr7jvWbn1irVx3mw+R1bu7X/Ntvu75XpFjE+du1ZupefO5uPFEeOngntxxJ67eV6ll9VDxbc75tn8+FK5R2N+Eq3TJ9SC7cu7lO3Td3H85RZvltw6zLkvyG2voA1/K2+nsh3nU/24mXk72CUOJaUqV+62U2fwVmp5r/eupt7ol8FXmZuhvL3i20o+HdehGrkcHKetr49yUJddn2AdzHnLMSUqN77ZtZxc2cEHvl/DfR1K5d71H7mBu6Jy4w9qv3tHx1fuI6c7TPa9h7uuA7ArKjcAACOhcgMAMBIqNwAAI6FyAwAwEio3AAAjoXIDADASKjcAACOhcgMAMJJE5fYu/7b6kcsbAQCwn1zPXV5bNd4OAAD6Sr9bblbr1eXXqdwAAOykW+U+IFcAANDyCTXzT5LtnikAAOhVuefWP4kKAABS+FYYAAAjoXIDADASKjcAACOhcgMAMJJ15f4vKjcAABdG5QYAYCRUbgAARkLlBgBgJFRuDOBj+ugVavp+maDp5zT9nJY3XreX2193VYJrw07nHdTV8t87n9Q66E+DeMbs+PL5GY3nKljzPL/BOlC5cSvVGq9U7vn7GfZq9WyjSx3Oick0TL0x29czLbWLXrmfz+2hi1av5IdeBAWVG8f5mD6elfV1w9xe3rWqx3Ecc5en8vd52Web28vby//K7asg3mm3bOvLbIPxZj7VeVfJV/P38izfnzDnFfMMli7IRzleT8M6vO5V8omnVlIqx6vxMxVrmqZXsV+/ol3wxpd3LTcuB5e5BfHL7Q35ZJdiOFRuHGpZU83i7e2lxwlm31i5gzHBlnJ3s+pEaTvj45z1tL27gjzjVzapsF4y1czF4xWDK3fp+VSnDhZhS+X+GlyUMWWkWWJXP5qRvfHlKwPzXYFVfDPJVD5BqNugcuNQXpWNK65ZuRvi6L/McWXyym1ctBpKaTxArIhdKrcYv7mn3CkfPbhyl/fGgNh2x8+cVO9ux7daz+ou3m2vzY2njl8KrFpkMX52fPWuG6By41CjV25vjLLlbSv3MT23GFMZ1tZz61JH3RJff55bVbBXTxxU7lTmbeWZyg10c2TlLvfaWLmrJ+6Gyi32auaPR1Zur1dWemgljrnvLSv3c6+2B0iKn/mcWrVyiz2xOX5j5fZeSXjj9btugMqNQ5mfIAs+WWbetfxR/FDbU+6NxKZPVE3f/8H19WN8l55MMK+ZuXlbP7Qgz1VYcX2W4711VvJRjldZzOw66E+JOAHlYJulem7zPfblxtUNcbwXoZw3CGXmqQRJLcKIqNw4VMdvZre54O9zl5P1AUbJE7oL/jp0cdfjeqFy4zhBN3yYi/xK9+2x9jNKnmjgdas3cMuDWqJyAwAwEio3AAAjoXIDADCSonL/k8oNAMB1UbkBABgJlRsAgJFQuQEAGAmVGwCAkVC5AQAYCZUbAICRULkBABgJlRsAgJE8K/e//0LlBgDg0h6Px58XqNwAAFza4/GY5/nz8/P5fyo3AACX9ng8XmV7nmcqNwAAl0bPDQDASOi5AQAYCT03AAAjoecGAGAk6577L/9D5QYA4LrWPTeVGwCAK6PnBgBgJPTcAACMhJ4bAICR0HMDADASem4AAEZCzw0AwEjouQEAGAk9NwAAI6HnBgBgJPTcAACMhJ4bAICR0HMDADASem4AAEZCzw0AwEjouQEAGAk9NwAAI6HnBgBgJLme+8c0mVGy2wEAQJt0z/1jmsx6nN0OAAAaNP47N803AACnaP93bppvAACOt+q5/x86c10NGQLtcQAAAABJRU5ErkJggg==" alt="" />
3,使用一个以上的进程fork,exec(执行系统调用)
os.fork()
告诉计算机复制关于当前运行的程序的一切信息岛一个新创建的单独程序,复制的程序与原来的程序几乎是完全相同的!
import os
pid = os.fork()
if pid == 0:# This is the child
print("this is the child")
else:
print("the child is pid %d" % pid)
os.wait()使Python parent id什么都不做;
import os
pid = os.foek()
#fork and exec together
print("second test")
if pid == 0:#This is the child
print("this is the child")
print("I'm going to exec another program now")
os.execl('/bin/cat','cat','/etc/moth')
else:
print("the child is pid %d" % pid)
os.wait()
4,使用python 通配符筛选有用的python模块私有及共有模块对象
import glob
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAZcAAADYCAIAAACofTlXAAANhElEQVR4nO3dXbrbKhKFYc0608g4zsB6BH3vvkiOmw1ViwKhn5K+98kFxhiBLC0jx/bePgCQ2Xb1AABgF1IMQG6kGIDcSDEAuV2aYr/IUAB7GTnya7PDZbT+jshN4HHcYDKzabTe9Wv7+6+q+RRBUxa+d1Ux9O3H66q8q2wci7Ot4NVvgYmb7cub3l3B/oE3U2fI4YsyM5I+TqKZ6eb15uXUyFqsTS5dP9qPVx7tH3i5zhly7KLMiyEdWMEUi2xR0ukztFASa7ol/QNvdrO1WLfgVXpt9Bal4JpoNGjMbkUnBBmgXfS+2L8Ps2+ek2K9RJu7otQLLu+mtyhrbwKoXPR/lO0b7W3507wvNvTuvvcu/u539/Vb72aNvkI0c5ArSiAoyUmS5BMSc7lDVAF7ZDh/RlZP15p4j4wFF7AT5w+A3EgxALmRYgByI8UA5EaKAciNFAOQ26UpJj5hf/uPViz8hETqz1ts/4x/Pi78kO2f7c+/YP3ceJDdRZ/dF+4dXqV47jz4a5LHpUbZc6R89HhwWxd9j7L7daLYWsz8sk5507srsvapOjEbiPHoQbb13l3eeKqxlXOMzEvst+D++fsouVCqFk3mGqpqHNyK2LrdMjwjpKOe17N/00JUWqqDsjrh27JoLzYh0kF36I1Hd9Ltx4vOquBtbrnuZV0kaKqk8+4a3fSPelLsuTrP66m/LyYqHd7CQSTa2EJDJpEXKOYyKrIJs6bbT5uzenZr12L2Jv5dW33CKSbuDXaC10q8FquYJ/9QfOg2N1mLiR6CKXaCo1OMCEPJzaMLfl9MVFoiISIioL2pA2XPpV98GN1uP42nptjcu/vukLiifC47ksymx/6+WFsZ+BVDfflj5pTXXlS2d3ldlTXiLrMT7y69UXOLdzhdzQj7vrvvveUf/98A8WELezyk2HM9+Xndf9Ry3AP398yzVCzQTu4EwNE4RQHkRooByI0UA5AbKQYgN1IMQG6kGIDcSLH/+739XtVV/SlZ62cb5j69OTOYl31fZ+4nz26ylxaO5LhDy/sZkqs+lnSLZy6dbt5FUuwz+2UaHOE++3/oVyT3dzKBFDvc7+33n5T5Fsz69q4qm3Q/5kP+ML7J5P/sjNlGl9so9H6fa/T3vNovA7WzM9sHxzPUT7dxO8Gd843MS283vtPM8XwbeFP2Binqg/MyJ1gOxjtW66FeEWQPTLHPz9wxg8x7VLwfsfWdKabL3lGlDqzY73l5HXr0XMR44v1EHrJ8vqPP0dz4489XcDy6k24/YqeJRCPFDuQljk4fM8Um+ok/kd4L+ES6meVIzfTZODFm0VV8LfPtszq1xBaH5tudV7vdocF749E13jIqsgmzpttPJLOMR5FiqyRKsarQ3nx8ik2vxe6TYnPjj4w2Mp7gMEixZM5MsfZREynmlcVr76EpFllWHJFiV63FtpErymq70ykcGa0Yp+6HFEvPfPddvCtv3lXeDP6HwB/BJ1JfIGzWuxJD5fKmWSnaf8JnozkLr//IrpgIMnM8E/M191t3u+ZGg/ONjF+Ms51R24l31+hO+wQPCVJslYWf/JrzgN/zCZ6QmPDUfcsnLZYRq6TTJE2x0TUFJjx4D5NiADCDFAOQGykGIDdSDEBupBiA3Egx/OX9r9nd/jctyzhXedt8J7AjTnXQn4YTHxmNf3hi+dly0Gn2gLNafKTWfAa9Tg4a2PJuu5vbud00T/xjnJliXln0M1R/tNHxHD3OJf1HnqBrg2x5n2JbpJir/IO4ZWpshbKmbPa9adZ7/VQPqX8l0RmPHnz8z/qWXxxpK72HeF+vEf23PZRHofn9lXaL5jdgvPoly5Pgl2zau7qV7V3tpPQ+jExker7fNno8bXvN3A/m9EV7bzATHphiZrJU9eXNNn3am1X90Oa8BgutSjHxqG7jSCZWB3qkXow/WC8SwSwH23f7b9PZm3J3Cl6lWd9NljbgIqPyttjdh6PtJzw8xUS9iBtvFVYFn7kcE/3r4ZUNRtdidj9TR8bEqeW9hndPsKHyznHqtUBb7rY3G5txLM7VSM1ofbdlVQiu+8oG5nzLe+PtlyDFhlNMr8VE/3p4y5FikQbe4OPjGU2N7mAiwxb1J6SYvne0w/2en2KRK0qzEEmx0bXYQVeUHr2wX/Wyf06KTS9bIjdHr4DK8p7UGIrvnfMNjieytjKHYW5Ct1/lgSn2+fy4KNP15c2qYNZHHlWVvfbn8JbxS1LsY50J5UarK6zvzUhZjz8+zu7lzFB7s759SFsuNxTsZG6+VVftFvV4zP0v+q86MR/VndpOz0wx7DGabldZNc67zcuT5Xk539vnjzc7bnWAM/H8AciNFAOQGykGIDdSDEBupBiA3EgxALmRYsm0n+Y1P98LvAeHfjJeWpFieK0HHvriuz7mN5O8rw2Z7c1vI5ntu7GyNYKzG6oHHu+Zh36VO1WhvWmGiNe+Tckq18yHr0KKAZVnHvpVQpVlbznm9WMux0QhvrBiLQYs8cxD30wovRbTnZj9eD2Lyv1IMaDyzEO/m2KRtZjX3itwRQlc4pmHvneZVlZWhWB7rwfdz9qpDdUDj/fMQ//BpzQpBlQeeOgfvRq6Vju7Z88X6OLQB5AbKQYgN1IMQG6kGIDcSDEAuZFiAHIjxQDkRooByI0UA5AbKQYgN1IMQG6kGIDcSDEAuZFiAHIjxQDkRooByI0UA5AbKQYgN1IMQG6kGIDcSDEAuZFiAHIjxQDkRooByI0UA5AbKQYgN1IMQG6kGIDcSDEAuZFiAHIjxQDkRooByI0UA5AbKQYgN1IMQG6kGIDcSDEAuZFiAHIzUmzbfvw7cNsvi9CJ+R79FMQtHMkJhxZexT6UyiOMo+1a99n/8ZGIlveZDh5jIMXK10+zXL3AevUf59U42D7yMm6uJYd6EP10G3+aCe6cb2ReervxnWaO59vAm7I3SFEfnJc5wXIwxCLG1mKibB5VXr2oadt7HXraRAiOJ95P5CHL56vn1Zbnxh9/voLj0Z10+xE7zQx6vJCbYt7yYUk5UjN9Nk6MWXQVX8t8+/ROrZ3z7c6r3e7Q4L3x6BpvGRXZhFnT7UfnPl6osxZ7c4pNr8Xuk2J667rNTdZiogdSDH90Uswri9feQ1Mssqw4IsWuWottI1eU1XanUzgyWjFO3Q8phuWM519fIGzWuxJD5fKmWSnaf8JnozkLr/9uP5/mRBUPaQe5c77mfutu19xocL6R8YtxtjNqO/Hu0hs1t0iKvVy+559D9jjsW2SU47AdXVNgAnsYSXHMAsiNFAOQGykGIDdSDEBupBiA3EgxALmRYgByM1Lsl/ORodF6ADiBG0xmNo3W25vctm3bykJ1V1VftW/vKivLxt8as/1G+AKPoM7k4xZlVe5UhfamGTpe+zYlq1wzHw4gqc6ZfNCirEqosuwtx7x+zOWYKLAQAx7msrVYW9ZrMd2J2Y/Xs6gEkM4F74t9AikWWYt57b0CV5TAI13zf5TelV1ZWRWC7b0edD8A8rrmZCZEAKxyQZqwGgKwEFECIDdSDEBupBiA3EgxALmRYgByI8UA5OammP4TqgBwEyrFhuoB4BKkGIDcSDEAuZFiAHIjxQDkRooByI0UA5AbKQYgNz71CiA3MglAbqQYgNxIMQC5kWIAciPFAORGigHIjRT7gT8xB6Rzzd8GvzNSDMjFDSYzm0br3a0Wf1i3TI2tUNaUzb43zXqvn+ohVVR54wFwf+qMPWhRZibLp4kPM8jKoBH1Q5vzGgBIoXPGHrEo82JCpJhZ0A285ZjoXw8PwD1dvBYT9dMpptdion89PAD3dMH7Yt208uonUmx0LcYVJZDONf9HaV7umfXV++5lwXtfrPuoquy1B5ACpyuA3EgxALmRYgByI8UA5EaKAciNFAOQGykGILcDUyzL34LLMs5V3jZfPJ575IpjPfgn3ZafLQedZg84q71nxKw/c76R42T5FvE2YylWVkYOl7sFxOh4jh7nkv69J0U8WScH2ZlIsRcaSDF9fHhrgWDnn58Lh2oR4a0pysbB+iXLE7OryPi7le1d7aTE2IITmZ7vt40eT9teM/eDOX3RXk8BD3ZsiolHTaz1vCsm87FevSc+TpEIZjnYvtt/m87elHWHotKs7yZLG3CRUXlb7O5Dncik2AsNPOdzx8fEqeW9hndPsKHyznF6ayiv3G1vNjbjWCzH4q8906nd1leF0Vjx5lveG2+PFyLFZsYpGniDj49nNDW6g+kOQ9efkGL6XlZb0MaOCL2wX/Wyf06KTS9bIjeDV0DdqyfzgSI1huJ753yD44msrTzmPiHFUBk+Irxl/JIU+1hnQrnR6grrezNS1uOPj7N7OTPU3qxvH9KWPz9P8kgnc/Otumq3qMdj7n/Rf9WJ+aju1PAqZxwCo+l2lVXjvNu8PFmeF0DjgF2J1QFwPk44ALmRYgByOzXF+MMcAJYjxQDkRooByI0UA5AbKQYgNyNTjvvb4KQYgOXcYDKzabS+3hgpBmA1lSnLF2WkGIDlOpmydlFGigFYjrUYgNx4XwxAbvwfJYDc+LwYgNxIMQC5kWIAciPFAORGpgDIbfsPAGS2/RcAMiPFAORGigHIjRQDkBspBiC3/wGfLjsIhX0AHAAAAABJRU5ErkJggg==" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAmoAAACNCAIAAACIbsE7AAAM5UlEQVR4nO3dS3rjNhCFUa4tu8kKvIeMPO0t9CaZgdIKDVRdVIHgC/rPlwEFgQWQUngNWWYvf/39z69fv1YAABC2EJ8AAGQRnwAApBGfAACkEZ8AAKQRnwAApBGfAACk3SA+vxa3/fXfjS3LsixjZrj8MaTayZbf9rSX34t46rjJeOMeNyiAT+PG55dzHc+2d7p3am7FA0/0fGhqvolYOjmxtsPVQxOfAEZRq8+vZTFDMdvuMteX78bw6nP5qWhcq4Wd2V8XX/2FZt1oFvcGXSqROuYBbicTPC5x3oLn57+9MvFprg7fLcVT24eR7ebQ9iTDRwoAL+0Pbw9fhpoBGV59Fle9ImnqbdFfDCFiSRf05qOLNOt4mV1seMMN17H69GK1fra5Hf+clvgEMErod5/HLkP3xefqrNJWGaW5pZWMQC/JzIVjZAizpVmnDnh9dGNXn2qgTHymttfMuhMAxnr86rNgpk4qt3Sfm6w+RYVgfJ7m/PgkOwGc4NLfff7ZLdpoiaSXyJ76oU6yPZ+yxqfRLLtWPiE+61+LBndsT5IPbwEkXfrNW/MrQsmvDjU/aTQD0usvGuunvFLbFvGUWcR7Sg9qjnh5Hry/ImR+G6ho3z70djE3zG3xtyv2VIlPAEk3+LvPg+2/LHJhBQAUZo5PsSQ9uQgAYDIzxycAAAchPgEASCM+AQBIIz4BAEgjPgEASCM+AQBIIz5L38v3qFLlbRacf1TkHJPdyq55Y4TJjnc4feoO/ddYxaBDbsHYnP/YA8yWyl4HHvRXcwP/xu+4vxgcWJP47NcM2lvF53xmPYd3OK49c+gLvO7h+gqOGvH9f3Rql/h14CZ3EIuLT1X0PPR4ic+27+X7FW/vDbO9fqoIRV3H3OWlfpG8e7Sad6prbjdva1c85d1sXfcP/R/u35kvWEHU0f11nbqxnk/qnMfnH7kZoe4vXhfzzaDPSfP81FMV466t86nnL06aWcqbp37fNk+COYR4vXQps907Lr1jWSd5uQ/e17N+KrLaq28O2pxt/Oajdbv3lDefYm7bY9ST7DNtfK4/A89MUG+veB0xejA+V//qbP4vV/SPtIuWur9X0FMfS3A+8TrBXZrPivOmtzsmk63p9W/Wr2MselHueuGC78P4uM1d9Btjz/s29R5oEgW9mvHiqx9XdTfvobndkStF9MYnIOajizTreJldbESGTpk8Ppvbeq89deKvkPjpdch2pCVyuWxOMjUfs5S3sIgM3Xy247wFZ7LtXO+ifwzS/c3O+uee/fFZVPNel77Xen986vMQmYPun3rfirdr6s3s1o8tCs1d4lGaGkXnkJdk5sIxMoTZ0qxTBzzxmUN86lFuFZ/ZcZv1z49PMfrSWhc2z1XzTXJcfEYqnBmfe7oF+zdfr2bB1LOh+l1XfDN1Urml+9xk9SkqEJ+dzozPeq+B8dnxU/+Q+IyExxHxGQyt4fHpnefsZLyHOqebc9PjZl9BPYFR8Rl5XeKjiJ4d79vmyxHPvNTr26EZe0VP/VAESf1QJ9meT1nj02iWXSvE517mV3vEV37Mp7YPg982eol+EiI/sXw3FhvxbW+ISP81nBz1/EX9Zp3t8QbPmzl08HhX/zwXz8bnY3aI9zfb613MM6bTSwztnf/u8xk55Ozr2DF/7wx48xSnTki9vh3in6zqD2PNgPT6i8b6KfEh7btFPGUW8Z7Sg5ojEp85A/+Cs8+oF+lCQ/7Px3rFmRx14f5Ms566/Relp1/WBs5/2vgU68LTPPR9NvanZlx1Mnn5+sz65hdL0pOLXIv4BADgSsQnAABpxCcAAGnEJwAAacQnAABpxOcHOfrLhPN9WREAPMTnBY775rcOsOx9AMaOfqb7zATArIjPa5wfn/VdUU4b+ny3mgyAKc0cn8Wtm+r24iZP227eDZ+CN5FarSWmNx89+dTfKWfjU99crW7cbjTrm4tdUce7o9u2uHfztvh5AIAhpo1PM9LWKrfMBN0mnGhPDed1GMuLDTNgiihK7RJZy3r1zTpewTpui0CNzwcABvqI+BTtIue8dWeRuOYCVNTX09t26Fh9utVa6RiMz/juor+O1XoBam4UnclLACcjPjvjU68+RX09vSMEP2tt7hWJwGz/yOrT3CAvAVzrU+Iz8uGtuRGJz+zq87gPb01efHZ8eNvcNvuLscQvNb0OxCeAO5g2Ptefn3/q9u3DYsNsj+xVbHv9Dz8JMjv1V4fqb/HUe+kYM39z6Y1uPuX97tObJwCcY+b4xHr8Ko3cAvCZiE8AANKITwAA0ohPAADSiE8AANKITwAA0ohPAADSiE8AANKIz0fyboR7t7/CzM5n1PyNWyY5ZwwA+hCfj+TFAPGp6xCfAEaZNj7F7fHMm/l5d9oz+5s38DP7N6/XSyV4dHZ7618Zq7f1TfvqzvVA4s55h8Znx7jEJ4BRpo3P9Wdwmjm3WrFXFzEf1vFcBKq5+yip1ae4Xbu4M3vdbt571usv5iPE+/eNS3wCGGXy+PS2vQWoV8dcgIqN+FJy7OrT7vzkf3dT1O8Yl/gEMMrHxadefeoiZh2vsmjc77j4FKtPc+Oq37b2LXOJTwCjfHR8RlafXn9v49oPb+3O9/t3N+PrbLeCM8/muHsGBYC3yePT/ER021hsBPt7FXSdsYeW63+zf3dzyJkxZ3XCuACwTh+fV0/hKI8+tEN/sGgOfcm4AOYzbXwevf671qOP7pJpP/qMAbihaeMTAIDjEJ8AAKQRnwAApBGfAACkEZ8AAKQRnwAApBGfpe/le1Sp8vYL1t/4H3rD2GL0m1T+2HsdRO5yBeApiM9+zaCNxOfq34f2ETpu3ZeKT/NWiM9FfALTmDY+v5fvV7y9N8z2+qkiFHUdc5eX+uLYvC170Udvm//8SN3+bjEbm/1DCef962D+v5SidyzrZO9Q+POWinX7u7HuZt6IsVmn2KX8scmZT8ehAbiPaeNz/Rl4ZoJ6e8XriNF3xqfejt/h3awg+vfdir3uHPwRIVh8Dd/qz4y01c+tOvbqh0V7ajivgzkrAA8yeXw2t/Vee+rEr4ze7z47YtXcjrREol1PXjy15xPp7M32vJ4iPs0N3cFbgIr6kYcAHoT4VHvtqZOKz2Kjfnjb+Az23P873eD5PDo+9epT1I88BPAgxKfaK16n3qsjPr3t4FeNhsdnfOFYf4GoO4bt+uEvEDVj0mvviM/s6pMPb4GZTB6f4vtB3reEiqe2D4PfNnqJrpb8b9asmwArNuLb24dmo+hfTKZ5IOZx7fzw9v+Cmc9vzY986/btw2LDbI/sVWx7/bMHBeBuJo/PaycwwcVxSPLBNMHbA/hk08anWBee5qHXx7GrRnge+vYA8DJtfAIAcBziEwCANOITAIA04hMAgDTiEwCANOITAIA04vPBjvjLh+WneP+1ul3AWt0lQAyxWMYd1qkeOvknzhm4EPH5YAdd77K3xdH9vQpF+zZH40Pf1hMn/8Q5AxeaOT69dUz3AqteLa3WUsMs7q3SzDreyqwY5bjjFaOk+r8PTe8VaTd7bs9e3W6+WMXEzHavzhp73SNHEakjxu073rq/+XoBiJg2Pr3rQvZ6IfoXF6xI/yF1Ih26j1fMU/c3Y0NkiVc5eAVvnsDiYR1X9cPmgYjhvA76ELLvn/jboOO46ocAhI+Lz9VfpYlSzR/Vvfp1n/oq1tyOxM8Jxyv6r/LqHJl/s71vd5FPxdzMDfE6envFj6Lv/WPWqfsHj0tMCYD2ifEZaY+UzV5Gr4rPSHu2T93fi08vhm8en83X0SsbP4q+948oYtbZ8y4CIHxcfDZTJx5LzcufuXqIx6c5n8jEvPkE64+KT33pT8Vn/HU5Ij7N11GMa85Wn4H4+0cXiR+vWZP4BOKmjc/V+ZBq+cncxSsinjLb64LepXnbWV+Ii1LHHa85qCd1XJFT2jxY73jNdvMVKbptNyJ7ieNandc9O39vts3+4rhEHW+eAEwzx+fRLr/WXD6Bc5gX+gfx5n+3g7rbfICbIz47eT+/nzyHC0c/zdMPUy89z5+P51aTAe6P+AQAII34RNviuHpeAHAZ4hMAgDTiEwCANOITAIA04hMAgDTiEwCANOITAIA04hMAgDTiEwCANOITAIA04hMAgDTiEwCANOITAIA04hMAgDTiEwCANOITAIA04hMAgDTiEwCANOITAIA04hMAgDTiEwCANOITAIA04hMAgDTiEwCANOITAIA04hMAgDTiEwCANOITAIA04hMAgDTiEwCANOITAIA04hMAgDTiEwCAtAvic1mWZVnOHBEAgLGITwAA0ohPAADSiE8AANKITwAA0tz4/HISLttuDEl8AgAeTq0+v5bFDMVsezkk8QkAeLj2h7fDl6HEJwDg6UK/+xy7DCU+AQBPx+oTAIC0fwHQlNY3mcv38AAAAABJRU5ErkJggg==" alt="" />
如果只需要一个新命令的最基本的调用,最简单的方式是使用os.system函数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAZwAAADRCAIAAAB3kpNoAAAN5UlEQVR4nO3dUZarKhCFYWbd0+hxnDndsXgf0p1lQ9WmQDSx8n/rPBiCgEZ3YxJzygYAiZRXDwAAViLUAKRCqAFIhVADkMprQu2/UqoFAFjirUPtv1Ie/8yHANCqA+LLiYzRcmFomlal2Dsn2juPDfgcxnn4VYoZVaPlpudsKzjtelQwc9BsZF8S76JtSrSj67c9epW97QJwhHsunTdlG52pmau0wdFd1oMJthOs322/SszIUAFEqBPppCnbRKhtfrq1D/c141e45gzLW+7WNytXkzVvAcARV8/U5i4/tzNDzWsn0sjoTK0tJ9SAta5+T22bnaltfz80WBVqerbVNnLwclVUINSAJa7+9HM00cz316tn26bmrj2Db4rpfs3L0mqVdjk4WgBdV59It5uY3GWcAB44Y13Bd/0AvBXOWACpEGoAUiHUAKRCqAFIhVADkAqhBiCV14Xal9P1V/n598ZKKWXRVz3KryWtXaz8Gx52fJXyrzz+BcvnxoN8rr6joOO9s2wvHkOi5k2z7Om8ENm3HFk+ezy4kRfc+2nPxZ6F4Zla+asq3JpJkFlfN775k7K20Gzc67Q0Iu2YG7gfTHC7xH4L7p+fteQ0qppSmTOsqnKwF9G7XTO8RUjAfaVPn7KZsRWeqVXHaHX+t8uivuhChIVu0BuPbqTbjpek1YLX3XLda8BI7lTB5z012vWfckLtk6hX+twp27FQ25wZzSYDbmwaIoPJyxdzkhXpwizpttPGrt66tTM1u4vfmdcWDjXxbLAR4OmuM7WKmQVDaaLrvMlMTbQQDLULnB1qJBq0BROx4ffUfleLFloimSISoX2o8+XIdWJ8GN1mt0bWUJv7oMAdEpefn6R+pa/49NP8QGDwg4LutZIZW159Udg+5TW1LxFPmY14T+lOzR7f4ew1E+35QYH36UH8gwXxrQ57PITaJ0n7Sh8/iDkNgDtKeN6K6dvFjQC4HictgFQINQCpEGoAUiHUAKRCqAFIhVADkAqh9uO7fK9qqv6yrvVDFHNfIp0ZzIfdVDT3E29vspcWjuSCQ8vscWu24vrvRb3Fa3kv3fiLhNo2e8cPzvA++3/oRzSPN7IQoXaW7/L9CJ3nglnePlVFlW7HXOXBuN3K/10ds45ebpPR+z2y0d8va+9YarfOrB8cz1A73crtBh7c3sh26X7jO80cz7OCt8neIEV5cLvMDdwPRpdXy8YmXJtr2UJt+xtDZq55a8XbEb0fDDW97B1M6niK/X6Z16BHb4sYT7ydyCrLt3f0NZobf/z1Co5HN9JtR+y0Ksi6wWf3Tqgd5AWQDiMz1Cbaib9+3p/3ibAzlyMl0yfnxJhFU/GZzrY7u8z2D25vd7vafocG741Hl5hdLAw10UI7WfMqCITaUTcKtWqhfZg+1KZnau8TanPjj4w2Mp7gMAi1e7sy1Nq1JkLNWxZ/mU8Ntcik44xQe9VMrYxcfnrntte7N/7IaMU4dTuEWjbmG/niDX7zqf3D4GcLD8HXT19NFOudi6Hl/UOzUNTfgkfq4BvqkV0xkWvmeCa219xv3X7NToPbGxm/GGe7RW0j3lOjO61dfexQIdQOWviNszkJfrAoeH5iwqftW77ScZSYQ13mpqE2OuPAhA/cw4QaABxCqAFIhVADkAqhBiAVQg1AKoQagFQIteuc9H/ujX5zNd7gNZaPHx+OY+hStwi17doviBJqWCvhMbT/f4j3IVJ29iX7as+HZrnXTrVK/SORznj04OP/m/L+7paqvLqXpb21RdyOE+nXu+2mXfbqi/EDc7IdRmbQbE2amLm2zx1RPtSdV2EhL6H2y23QtHln1u92Krr2xhOpD0zLdhh5qSFCzVzQFbzJmmhfD29fYXSmZrfjBESbIObULBJq3o3TmxWLuj6wULZj6+xQ0zM10b4e3nIXhJp+drRBYJVsh1o3vLzyiVAbnamddPlp6r5vJUItOPPqdi0uP4HzJDzUvGu3tnz/sFowyyNrVcte/Qu013rVRwHthwbeB5HmBaN5ORn8oICMw3k4tgCkQqgBSIVQA5AKoQYgFUINQCqEGoBUCDUAqRBqAFIh1ACkQqgBSIVQA5AKoQYgFUINQCqEGoBUCDUAqRBqAFIh1ACkQqgBSIVQA5AKoQYgFUINQCqEGoBUCDUAqRBqAFIh1ACkQqgBSIVQA5AKoQYgFUINQCqEGoBUCDUAqRBqAFIh1ACkQqgBSIVQA5AKoQYgFUINQCqEGoBUCDUAqRBqAFKpQ62UP/9O7PjD4nRie89+CeIWjuSCQwsfzji49gccB99rvc/+j49E1HyfzUFi0VDb/3U1l6s/v1755vytDtaP/JE3Z5pDLYh2upW3ZgMPbm9ku3S/8Z1mjudZwdtkb5CiPLhd5gbuB6PL8ZkGZmpi2TyYvHJR0tb3GvS0AREcT7ydyCrLt1dvV7s8N/746xUcj26k247YaVWQieDDp7FDzZtcLFmOlEyfnBNjFk3FZzrbVp9jemDeeLzxd7er7Xdo8N54dIk3yYp0YZZ02/H+DOg/D/goaqb2yaE2PVN7n1DTves6bzJTEy0QavCoUPOWxV/mU0MtMuk4I9ReNVMrI5ef3rnt9d6aDrXg8TDRrBgkoQZP/crrq4livXMxtLx/aBaK+lv45DS3wmu/287WnLdilXaQB7fX3G/dfs1Og9sbGb8YZ7tFbSPeU7pTs8eq2tChgpRu9spzpJ6HfYscbnAgj844MIE9jDQ4igGkQqgBSIVQA5AKoQYgFUINQCqEGoBUXhdqX07XX+Xn3xsrpZRFX38ov5a0drHyzx52+VfEU+cNxuv3vE7xhuoX+8s5u0bLJ713lu3FY0jUvGmWPYmwuDhH9t21XRNqH8V4sb9KMaNqtNxlzsWeheGZWvmrKtyaSZBZXze++ZOyttBs3Ou0NCLtmBu4H0xwu8R+C+6fn7VGQs2cST1Lqqf2DyPL3a7tQYa3FDfivqKnT9nM2ArP1KpjsTr/22VRX3QhwkI36I1HN9Jtx0vSasHrbrmJmZoXdu2z3eX4lSah9lHUK3rulO1YqG3OjGaTATc2DZHB5OWLOcmKdGGWdNtpY1dv3dqZmupoJNSGlreRORo+0F1nahUzC4bSRNd5k5maaCEYape5PtRINDwsmIgNv6f2u1q00BLJFJEI7UOdL0euE+PD6Da7NT4h1Nq324Ir9gfJ5WdG9St6xaef5gcCgx8UdK+VzNjy6ovC9imvqX2JeMpsxHtKd2r2+PKz9PmBgPnef1W+f+itYi6Yy+JbHfZQCbWM0r6ixw9WDnfgjhKet2L6dnEjAK7HSQsgFUINQCqEGoBUCDUAqRBqAFIh1ACkQqj9+C7fq5qqv6zr/BDFNU7qsfs117N/N21r9iffv8EDx8Gwbvy9Vaid51XbQqhBy3YcfJfvR+g8F8zy9qkqqnQ75ioPxu1Wzr2K5r1B3eXujUTVU8HfL6vqR/JX3N0Z73do26t+jdtIyTXkC7XtbwyZueatFW9H9B4Mtc0PDnGfts7HtguvpK3vNSjoOsF+I8vtfnO7INSQNdS6y3qtI+3Ezysx01myHCnpBocwEWpDy9v4BTuhho1QE88SatqSfnU7hBomJDwIrgy1dq2Foea9lxRcjpSsuvxcEmrx987cIRFqyBpq4tMA7zOB6qn9w+BnCw/B8+r5brqZIO3b6u27+HrZ6yJSfwvkSNV4m4nxfsX2Vs/29yqhhqyh9toBJDi1hi763kSC3Y4lsh0HYg51mZueXWLmeAs33e1YjuMAQCqEGoBUCDUAqRBqAFIh1ACkQqgBSIVQu855/+feTb+E0ZV1u3AqDppLEWpDsm4XTpXwoNn/P8T7ECk7+5J9tedDs9xrp1ql/pFIZzx68EP/m7K40cpbbr9k693btG/fux0qMkgxeHG72JGW8ZmyHTRm0GxNmpi5ts8dUT7UnVdhLfPkFzeQtyHVBlxVuQo4r/7Bka9qFp8s20HjpYYINXNBV/Ama6J9Pbx9hYmZmt3U+C98mJM1c0Hc0O4NZugGeGBatmPo7FDTMzXRvh7eGYZCTczUzIVV6cPUDMtlO4a64eWVT4Ta6EztvMtPk/fTPd1QC87U1g6yHScwJ+Ex5F27teX7h9WCWR5Zq1r26l/D+50y83fNzKe899TMOkcG6X18AYziAAKQCqEGIBVCDUAqhBqAVAg1AKkQagBSIdQApEKoAUiFULufK7++e4S44wI4D8fZ6ZafzDdKB0IN10t4nEVuk4qcYGb9yO1Q3UJvnPuWnyXtqLxxbk2IBNvX/Zrjr3ZCZDzm4IHlsh1k3lk0enaJ+uZysH5knF7QRDrqjsdrX5QPdedVELsCWCvbQdY9CdszTTRl1hcB161vVtbpEA+1SDVvQVcwN81cnhstsFC2g2zunJ9rVjTinfzxgb1JqMUD/chogYWyHWTdk9l7OHQ2tif8wZNfVJgYWKR8ItRGZ2rBSSuwVsKDzLtWMsv3z3qNRKZakfa7q7TLZkeR7TXLvfZ1v3qtduvM+t7ggeU4yCa98Py8aTTcdNi4HY6zYd507MoBvKrrI246bNwOxxmAVAg1AKkQagBSIdQApEKoAUiFUAOQCqEGIBVCDUAqhBqAVAg1AKkQagBSIdQApEKoAUiFUAOQCqEGIBVCDUAqhBqAVAg1AKkQagBSIdQApEKoAUiFUAOQCqEGIBVCDUAqhBqAVAg1AKkQagBSIdQApEKoAUiFUAOQCqEGIBVCDUAqhBqAVP4HZPwrJRnwlJoAAAAASUVORK5CYII=" alt="" />
上面简单说了下使用一个以上的进程(进程分叉),下面来讲讲线程(在相同的进程中完成多个工作)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABF0AAAFrCAIAAACMnmESAAAgAElEQVR4nO3da5KjOLMAUHY925h19Ca5P/qbuhSSUinx8INzYmKCkkUqEdhWFm7XsgIAADzb8uoEAAAAXkxdBAAAPJ26CAAAeLrProuWZVmWzz4EAADg5c4rKv65tj5p1T/qIgAA4KDlf/XMP8u+sPnbsmv/53f/n4e2nXsF0s9Nnp+SZlvbLBvVxl0h9BNKgQQAAMwpypvdRvljq/IZuV+0LY22NVK15im3q6GCPgAAAIHidtBuo/yxVf8M1kXBRuuWURwq6AMAABB4r7po7n5Rtw8AAEDgmroo8U+Mqhvlvykqd0luAwAAJLW/LyH43oXW9yuMfO9C9d8XtR4tH2p1VhoBAACj+mUMAADAd0vd4QEAAPhiKiIAAODp1EUAAMDTqYsAAICnUxcBAABPpy4CAACeTl0EAAA83bV10Z1/aLU61uWjv/dXnC816xucFwAAeCunLVhba98718SPWH+PVGI/ExJs3OAR5wUAgE/239913f5115/tbUscpbgjsX1oLW4a7G5clA9V48Tt6+/1d9C5zKeM01/K/1P8Sdxg3rYP7SaznP+y/y5O2b+ndSft/vMCAABvqFij/2zs1vGJ0qjVvtTuUVRrj2pNlWzPBGzl043TVC1y1kaNVK2XWtFalc/UJ/eS87DedV4AAOCttOui1kYrUOJzdK3tbeNO66FqkGRdVG534zS1Cpt4ApN1UWbEnOQ8VHuuF5wXAAB4K29XF2WCq4tGHa+LMmHVRQAAfKhL6qLR7bix3HH6A2CtHOY/9/XauihdI91QFw2dFwAAeCvt710Y/PdFa/iP9Vvb5aK5+3mttViCx+1x59ZD/ZkrvwIhnrfW9yUE37vQ+n6Fwe9deKvzAgAAb8hqteKSRfzU598AAIAbWKz/T+s+yTnGv1kbAAC4jZU6AADwdOoiAADg6dRFAADA06mLAACAp1MXAQAAT6cuAgAAnu5N6yJ/BhQAALjNeeXH4B/nUfkAAABv4r8/Nlr+1dGfP0W6bf/nd/+fh7adEwXS8lv1oV3Luimlykev+nusAADAAxTlzW6j/LFV+Zx6v6haLK1FjVR2G8oBAABg/f/7RX8l66Kqi+ui6sZSGMoBAABg/YK6aGhQAACA0jV1Ue6fGFW3qy3qIgAA4Drt70sIvneh9f0K6e9d+N/Y4fcu7P5NUfXfF1X7AwAADBkoYwAAAL7S2B0eAACA76MiAgAAnk5dBAAAPJ26CAAAeDp1EQAA8HTqIgAA4OnURQAAwNNdXhcty//++7v9Wj/J/KR09Sj5/meNCwAAjLp2Hb1dpr/Jqn2X0ilxjsc/a2buHxEAAL7Af3/Xtfzrrv80Hmq1V6O3H9/dR9ptrEUdVb0Js9ux239t1y1B/zh4shCKbyKVjdX7bMH8dONk8o/7r7V5Xtd1WZZFmQUAwCcraqHdRrI9GKBXP8QPlY3x7pn++fjJOHFjHCczUDf/5ECj+Sdv96mLAAD4dEvqvtBW+mZRZbDBemP6Fs2uc+a+05E848Y4/+5AQc/R+0UH6yIAAPhWufs/o+2twWbronPrk26Qt7pfFPS8+X4RAAB8q+IG0c/21uzn6Fr3KDKfE9u2Jz9XFjdWQ1X7H7yvFceZuF/UnZ/kjqfXn/895HN0AAB8tt8fitttHPvShfW/xXT1w2PbxupD6++l/K7/LnIQvxVkm+GufytOeXT59mr+wSF0xx2Ns9ZKo+TxBvO8qosAAPh8b7GctagGAABe6PUVSesuBAAAwD2UIwAAwNOpiwAAgKdTFwEAAE+nLgIAAJ5OXQQAADyduggAAHi64bpo+bMsf5btxkT73+3df+W+1dFHE87rjg5Vd14573+VnpXhmx/pDemdPsT2xZa3cuS8vO0z7qxortjbvOT1oTriRCYnXm/V0S/K5863kiPr9ud4WV3U3XiJB14BD3H1O/SdV05mrO94HuXjvOR4bxj0xCG8uAXeYXKO5PC0CuRT8vxEV8ztXMzjmUxE+Mq3EnXRkPmLZjdZo+2txtbJCCr43U2nbv7bU57Jpxq8Ne50Pru6sTsP1UGr2904o3l2Owfxg8bR411rV8XoSTl+sn4eKvMfzTPTvtau0qE8587jbtw4TvA82j5aveaTca44v6P945MbbOfPb6v/UP67+Tlyqe/yLNPLPx/X9tQNJTkU58j1MzpvrTyr/df07zuGrpPucQVxytM6MQ9lYzXPiTj5ZKpHFOcTzM/xcZP9h67nTJ5nXYflhRHHzzy/WgPFmcRxjjx5W4dQ9l9785lJafr5mz+03cZc+0MMH/O589u6boJH8z/Gw7Wu2syPo+2ZfIL0MvGD7aE4o3kO9T/3eIdOX+byG3p9KduraQ/lmWkffR3MjJsJEjwxR09E5rrNDHT6+Z3on3wOVnfJnN/49XAo//w73MR1WN0+8fkbpHr8+dUa687X88zzevQ6OXIeg8mZvpBaec7FSe5bdp4+Lze8nlR/HD2PV1+H5S7dNOKYrUeHznK1/2iEeJfR63no/Wvu+RsnnN832f4QLz7m+ErKXOXLVNE8lE91iNa4Q/nEcVrbrXx2/8/HGc0zOdXxpLXej4eON59ntX+QT3Bc3fYj41bbj7wOBo0TT4c4z4mBjjzfLzq/+f7552y8PT0/+Xwyu+86dyf59OfvWc/HVp7J/FspdZNZc8c7/bwevU5a85l5XgfHFScZJzx0PSfjjO4+/Xy8+vVkbczz6Hk8eLyjz7vR7W7CQ5nE/UcjxLuMXs/559HQ8zeIwylePKfHr7P8oxMdkq8XVzyrR1+//m5v/x/HHMpz4nWz2n/ifb3bJ5lnpn9GZg6nx23lf/B9qxt/KEgmTn6goef71ef34PxMrxWm5yefT2b3btgT11uXPh8nnkfTz6nMuK3ts56Pyfj5OAffZ4Oeo3OeiTO6+/Tz8erXk9buBxcep1+HmZjBdjfhoUzi/ie+xXfjj45+5H0hPwoTXjyhB6+zE9cx3Q5L4vf3V6+rWvn8PFS+q53+frwkfkWRnJ9giO643fVQ0H/0daebZ3I7bix3zMzDUJ5nXZ/dfPLP023M6edjELM4psjEdZ7J4cjzMb+2iONkdu/umJn/5HU79LzIp5rPv0xvqP9au0KOXJ9HXleT+Q/FCU7W9IUUh70uzlnn/YbXk6Fxr7jOR99fMtd5sN1qidu7WSXHHR10NP7E++B64Lz//DjxQsrWK6dvad8cLB9dNvcN48bkoNWLKZNSpnP+xSWTT2vSqi9Jmfk8Mm/luNPH1Zq67riZ+NX5yeeTnIrWoPk8M9dbfFz5PNf2PHeDJOd59PyuxWmdm5/M8Y5OWrxL9YzHx9W6TlrzE/Tv5t+a/NEg8XmPj7d6CMn4Z+WZv/6781b2D1KqHm85Sv56C/JPXletQ9s1BjEzGQbjHryeg0txKJ9qhGDekvnE466J8zvxvBi6zk+8DrfdMtd5tSV5XEPzfOQ62QXp5pO8fuLGE+NsH+0eLAHT96aedmU/7Xjh0z35OWvxAfCVvLK/o/xvOL7D044XPt3Dn7OPPXCA7+bFHQAAeDp1EQAA8HTqIgAA4OnURQAAwNOpiwAAgKdTFwEAAE93oC76Z1n/Se/+t3O+/6BlMPBo/wnL4TGWZWkFWf5zcIj7fWLOAAB8vWOL1GSdc1k5dKLTl+unFADVIEORX1WHBBXdzZkAAEDX+CJ1e+dnW/D8tLcar7lftCz/+69s3G5k+lcfms1qH2X5rdrejbMUumm0OgfJrLX7UduW7UPdg6pORZBtfEQAAHCFwWVoWfOU7d0fL1Aup7cVTvXRbsuxfPZFSPXHuFu1pdWYzKQ7breS2RVFQbehlFpDAwDADQ7URdsf4/tCL6qLko+2Wo7lE90vqjbmb60cr4vKoYdGrN4sysSZyB8AAG5wXl2U3+sC718XVR/tVggvuV+U7z9X/KiLAAB4N9d8ji7Y6xrn1kXH1+1zn6Prxon3ynwErto4VBcFn6PrjjuRPwAA3GB8Gbr73oXWR+mqjVd+78LuHxTtvnqhfCj5lQyzWUXfl5B5qNoefG6tHLQM1WrcbWT6Dx1aPDm7/tWHAADgUpahV7l5iX9nUXFkIJUPAABvyCL1KvfXRVfHb93/GY1zVkoAAHAWi1QAAODp3qgu2v3Ln+5/T8sHAAC4iOU8AADwdOoiAADg6dRFAADA06mLAACAp3tcXbT8WZY/y3Zjrv0rvfYYzxr9/c/UnRlePdaR+N19q4++8PyOjnt1nn+n4rpR3u151Drei87Ly19JJkY/ZX7ykYP2F/qU1wesx3hDj7uwznoefvpzspX/x60DDsa5YeX6knHvHOtI/Ll93+fZ99rfI7z/oCcm+RHH+w7ur5Pff5ZUSu9JXcQbetyF9fNc2j2phtp/fm3ZetK2tne7TDzJ43GTcVr5/xxmtX3ol9Pbzq2pq+6VidOa50yczHmM+6/FeexOQnKeg/hDea7t+c+k2spnOv6u8+70deNXA2byn8unO5/VQfP9u8fbPYrduN3rZPS6nTjeTJ6th0bjVI+37L+OXFdB/GqcIM943OR5yeTZOq6hOK3+1eNNPh+D51d1310ao9dza+hqkIPnJT6KuXG78VvHm7l+uqfmYJygf3Ledhtz7XCix11bZz0PM+8Q1Zewsn/+qR7kMBQn6FONkzz20cTKOMkDLB/Kx+nuO5RG19A8t+IfuVaT77utH7vXw+j7XyZ+K7FMwsFe3XxGr8/uWNX+p8xnJpkj121yiIkIZeP08QYPDV1X576uDr1+xuclmef0C0gr4eqP1ZZMz8zrz1Is0KfTzmf+qufL3OvVue8X5fvpue875Y9V0zEnzg4kubYmZd4hMu8No+8fR8YKQsVxlvbva4eCl6HiHZMrhuT7YnXciffLVkrdPDMxW/kE+Zft0++78fwcf/8rlzuj57GVwND1GeeTvz6DDDP9j8xnJpkj121yiIkIZeP08QYPHXl9yMeJM8m8fg5dP6Nrx2Sc3UND139mxPz7xW4jeS6mn6cvfL4MvVgFuQ0d1+jxJt93jhwXvCHX7qTMO0TmdXbu/WNurCBUHOeUxVDZfvD9ezrO9PtKnFI3z0zMTD7dPEfXnaPX1cS6drvQObK+mU4gk8/o9dkdOrlenDucocv+6nVePkLZOH28wUNz11W87+jraub1c+j6mX6+Jyd84voP2ssne0t5INV9j7xuXP06PzTuwT7T718H3wczuU3sDu/GhTsps3b8lLpodB08FLwVZ0n8PjJzvKNxgvMy/f4RGJrnVvzkxZOf52ScVm5x/OCMlMudufXr3MK6m8/o9VnuMtd/9Hwlh7t6nTf9OjN3+oJuB8/L3Otq9wrJvH7Gx57M86zX1YnrP2gvn+wtZQLVfY+8blz9On/WuJnIo+8XmfM7/b7Til/9cW5W4WYu03lL+8MGPy/r242y/7alFa016ME41Z5BnNYhDOVZHSKOHww6F2etvSUEebaSyb/E5+c5iD96XMHxdpOMc+vGb43107k7D5njPX5qynyC48qcmmpjPGmth7qZZ+bh4OQMHW8mVCv+aDLdQxu9rrrBq0dRzbw7aaMXVeb8VlO9P045IUMndztiddxgl6EprTbmDyo+isy4B+MPDRqf36E4xy+G5MHCa7lMgdN48zvOBL6/1nXu3G2ZjbNcMZPODlR5YgCn8V47Z/T3x7xWqyhyBv8yFSc6cTK9zkCX5wYAAPB06iIAAODp1EUAAMDTqYsAAICnUxcBAABPpy4CAACeTl3UtyzLsjT+VOV/bk6p6n0y+aucnLeaLgAA+GGFmlJdyr/h+r5M6YVJBsXkzZkAAEDscSvU5bdqe3WvIEh3of/TJz9uNX5rO5ln8qFW/vn+1WS67QAA8CrPWqGWtUHcHrS0GoOhM2VMN5/Wdr4ljn8idREAAJ/icSvU6k2P7v2QU+qiOJkgpVac6booiN/t7H4RAADf59Er1Nb9maBnt/GKCKffL5pLY5S6CACAT/GsFWryc2vdHeO9jt9xytwjSo7S2jeTxkHqIgAAPsWzVqjBh8Eyn2fb1SRxqCPjBv238ZO7JA/qdK3I140IAABzrFC5iroIAIBPYYXKVYL7VC/MCgAASlaoAADA06mLAACAp1MXAQAAT6cuAgAAnk5dBAAAPJ26CAAAeDp1EXvBV2kPfdH26J+OPesrvO//KvCl5uZMWmMdT+Cs6+GtfGLOAMClLA5O9h3rreMr7N2fLToy7oSbR/wJEmzc4KK66JTIr3pe+OPCAEDS4xYHu1/nl+1lY7Bd7V/9JXocP/l79+pNiaFd4ny2jx4ZN+gwNO7aOF+t85KJ05qE4JB3jWv7fLVa8nGG8mnNT3IeMuNW4yyFcpfMoK1xM/Oz1i6D4KAykwMAPNmzVgbVtddaW/Zltqu7J5eV1Tina40b5NNqaTVmxu3mk+lQLnnn4nT3HUoj3nENr5N82pn2oYDJ+EFLq7HllHk++PzNpAQAPNazVgYT6/Uj29vG1q+uRxeXrTiZXfJxDq6D48VoftzkojaT/9D8z62zu5kcvE7K9u50xfOQGTfOtmxsaXU+5bzE8zaaEgDwTM9aGQSLs9aPR7a748YPna61ng56dhvzu5ft3fV3ct5G47xzXZQJe6QuysRJJna8LjrrvMw9v9RFAMDWs1YGE+vL3e+k4z7BvsmUzjWxjgw6xL/yDzpXx83cl5g4L5kdR8/XW9VF2/zPms83vB66I7bmITNudy8A4IEetzJYNjLt62YFttsot3ehWvF3a/rWuOcebCafZJ7VUMHorcbMVATzMxenTLg7P5n5rMYpB91tx+Nm8g+Oa61VAtPjVgdthVpr4nHX4oRm+g8dWplPNU8A4JmsDOCb3bz6r1Yg1431kn0BgK9kcQDf7P666Or4rfs/o3HOSgkA+A4WBwAAwNOpiwAAgKdTFwEAAE+nLgIAAJ5OXQQAADyduggAAHg6dVHKv8u/Z4Xa/9HJP8vyZ9lu/Gzv/jsrgd3oV4S92nUTcuforz2KjDszvGis6vNr9T3dAEDB4uBk3QoqWRe1Np6mdeCvnZCzRs/Hufp432Ge1UUAwAs9a3Hw7/Lv37rlZ6PaXj60q3biONVd/ipXY3Hls2ss7ynttnc3l1qLwrLnUP/Mr/ard7qGIuyClPnEeSYX2bvjSsYpG6txWucrE6eVTOZ4W9dDdxKS8xzEH8pzbc//WYLnl9IIANh63MpgW7FUS6PWXvk4wegH66K1WLtvt1sRoqVhY10e5JZcZwc5x4fczTCZZyZ+MrHuvAXz09rODBTvO5RG19A8t+K38sm0jyacpC4CAJIetzJo1TBxPVOtiybijC7FhuqiboRkXVRuH6k3JnLOjNXKM7j1kQ9ehop3jOME3Vp1afU+TDf/0bmNM4ljBkV4K/+yffS6Ope6CADYetzKQF00Ef+D6qJuwNHg1W4X1UXn3i9qpdTNMxMzk083T3URAPA+HrcyuLMuKvc6sS7K3E9YB9flrf6jn3e6qC7qbh8sBvLHO1HPjMYJzm+mrjgyFaPb3UFbxxXPc+tKG21vURcBAFuPWxlUvxch+L6E6kPbH5Nf1fDX0FKs/DDStr3cCD68VEZrfa6p239N1zND+QzNw+hxjeZZHSKOHww6F2ctFvpxnq1k8qVCfp6D+KPH1T3eVp759ubxqosAgI3HrQxO/EtEc75gNTa0+oQ39AVPQwDgXM9aHAR3cm7zoQuyifsP8LY+9GkIAFzH4gAAAHg6dREAAPB06iIAAODp1EUAAMDTqYsAAICnUxcBAABPpy5izO4Ljn3fMQAAX8Ci9mSvqhPOGrcbR10EAMD3edyidvnP+ntNv2zsGrcbu/bqdhknGT9TY1SHOGvcIM5Ph2QjAAB8kGetaIPaZrRbZrvV2Io/lP9F48bJqIsAAPhKz1rRtlbwyXrjSF3UuhUzWlQE94W6/TPjqosAAHigZ61oX1gXjaaUcfB+0UQ+6iIAAL7Ss1a0rTrhSF0U3IdpxQ9S2j0U3xQaGnfiflHZR10EAMBXetyKNvgcWvXDZj8trUfXWskRx9/VVNX+Zdhk/9YuZcJDcX4eSjYCAMAHsaJlTFl3vSoTAAA4i0UtY9RFAAB8H4taAADg6dRFAADA06mLAACAp1MXAQAAT6cuAgAAnk5dBAAAPJ26aF3Xdf1nWf8Jp6L6aHevnH+Xf/9d/j0e56/jX5zd+qOua/gnX+93SiZvciwAALyWReF/5iqcM+qidV3fqi5qBXnDEqJMaTTJIweV2fdVk/aGJwsA4J09bPH09w7P32Jmu72uvxpbu1QDtoYYKZnKuujvTaTdraSfH1u3mKp1wla1vRtnKcSH89MnP241fms7mWf+ofhwggPMdOvmU4YN5m2tTUswydVJmzhkAIDv9rzl0bZc2W3vaqTWXkF7/GPbrsgJftxWRGVpFK/4t4vpoFu1pdXYkixjuvm0tvMtcfzWLoHReRjKpztvu6Io6BakpC4CANh53vLo577QGtZI1b1a0bY/7v7LKQuh3X/Vnt26aM3dT7ioLqo2tsZtJXNKXRTED3ZpBUl2zufTrWeCenIoDgAALc9bPF1dF02J7xe1HsrURdVHu4vm6+qi0X3PqouCPmeVOvnOQ7Vf0D/IRF0EADDkeYunJ9VFE+vpoEN86+NghNaPu3sj3YCtfZPDJeVvHHXzGb1ftO2frIvK41U1AQDsPHJ5VC2Kgu9jqH4ubrS9Ifi8XNm+/bHcZT3jewiq7cXHtTrr7NFxg/7b+MldkgfVmrS85I7dJHcbmf5le2Yetu0DxwkA8ACWR9/GknfIJ07XJ+YMAPDmLLC+jUXzkE+ZruB+FwAAx1ljAQAAT6cuAgAAnk5dBAAAPJ26CAAAeDp1EQAA8HTqIgAA4OnURY+w+/OvR+z/eOifZfmzbDd+2jtxfvfn5c46I/ec2ZdcP38HvWLc1vOo2X/869rLPwN9xPHviw++dP6tvpL+lEyCIz0YGYATeVHml+7KKVMX/bR0QqmLCq+dk7NGz8c5MuLNc3XpcEN10d/n4FxpNJdeK4crgrxhqVCmNJqkugjgI3hR/iQ/v/Hd/ep3114+tFsPxXGqu/xVWR/8roXK9rL/dgnYPeSf/uX9qHIpuavNqv3Lxl20oH+c5FCc+KDi/kPztv6e5zhI2ViNE8xzN87E8WaOq6V7/UwEOXJdBUPsNjr9p9bT5ZO6+nxvvT4Eoy+/Vdu7cZZCfDg/ffLjVuO3tpN55h9qHUV8mADcxivyh9muVKpLmdZe+TjB6Pm66Kdxt15sPVQfrlFrBXGq2604rTSC/kGq+ThxPtXgQ/m0DrAbJz9Rcc7xQNPHe8X108qhGy2OkyyHurl19koUD1vl70daP7ZeH37GzfzYLQwyxVIsWcZ082lt51vi+K1dgnYA7ucV+cO0api4nqnWRRNxkm/hrV+TT9cbwaJ8Ldajre1MqGrnod/3B43TddHamIehZMo4R07QUF0UjDs0/zdcP3GobqqjMeckb6eUqveNW7eMWnutjTohvmmTKWCCxpZWhNa4mZs503VRED/epdoOwP28In+Yj6iL/r9/+r7BULTRuujg/Yqh3ILGI3XRUHpBcRV3u6guOmv+b7h+Mrtn8rm0Lvr/UQafj/H9otZDmbqo+mg3vevqotF9z6qLgj7qIoD35xX5w9xZF42uh/ad/yxre7GYufWRqStav6dv3WdI3q+IE0vucrAuml7HT8xbZqDuPCd3HD3eTJxu/yD+KXVR/n5RJvNUPuPfvnBRXZT83FppqKo5fscpc48oOUpr3+RwmXYA7ucV+cME/046+IqF3UPbH5Nf1fDXwftF63+Lwp+SKV4gtj6kVMYpH9rFr46biZ9cf2fiZNp3qU4kkxx3bcxPMHR1iNE4a3Heh+b/9OsnM5+7ON184vN1Vl20jjwfg8/Ljb4+lOMGH5bLfJ5tV5PEoY6MG/Tfxk/ukjyo1qR12wG4n1fkD3PiN+3OecN38bNWmUDSG74OvDNFEcBH8KL8SYI7Obd5tzfyobsowCne7XXgzamLAD6CF2UAAODp1EUAAMDTqYsAAICnUxcBAABPpy4CAACeTl0EAAA8nbroq7zkW1+rf8TwilEyjb73FgCACRaRH+Y91/3310Wjf1QeAAACFpGfZPmt+tCuZd2UCuWj+Vs9wdBr475NnGcr1eR9oaBdaQQAwCgryA8TL/qrRcha1Ehlt6FBu3VR68eg27Yiyt8FUhcBAHAKK8gPM1oXVTeWQmbcoHNwU2hX8LTGbW23WoJ2dREAAKOsID/MWXXRuTkkb0AF46qLAAB4ISvIDzNUP8zVReVNoYOfo+u2r+oiAABeygry81Q/z1Z+Pq3cXn8XSK2PxmWCdx860l495NYkVFNqzBwAANRZQfIWusVMstpRFAEAMMEiktcL7hRt+yRDnZQUAAAPYhEJAAA8nboIAAB4OnURAADwdOoiAADg6dRFAADA06mLAACAp1MXpfy7/HtWqP0fIf2zLH+W7cbuobK9GTnd8544p4xyQybPlL+oThnrxPN4z/X5Eh90XOWLVbf/ts/okcb9y9fJ1uvq9Pf4f+4fAPh3+fe696+5CK0gmT/YcJtTMrnhWB41n+vUQbX+GH23Z7edr+Rkn6z7DpSsi+bWEGetq+4ZMbOWOjjEYyXn9nicZP9zT+LxaC6q2ND1k3yeTtdFcfxqe/V19e9r79wSp1xaTQQ5bm7ct6qLWkHecOlZpjSa5D0H9Zz5HN1ltARSF7E+rS76+c3Z7ldou/byod37ShynustfldeFn/fs3KIhvolUNm47b8eqbmfilL+UrebTbY8PM8ikO/RQ/10+lbVU+5B3jbto8TwESQ7FGT0vPx2S81PtvMs2HyR/ncSS12crpdGLpxW/esHMHVer8z3X+ej8VPPsHlf3utqNu8u/e7DV/vtBTyqKtloP7Rq3j5b9t0TzhYMAABOeSURBVN3iOBO/Ly/fjKrvU633tdY8BCnFecbz2T20zHzGQ+zi7LaTeeYfig8nE8d8toJkZCZtup3v87gzvX3Fr74ltPbKxwlGr7xSjNRFmYVF68dgnTEUJ5Nqq3+QTyxeJHXjTOSTWmP1Dmc0z9E4o+clmVgy7Uyq1c6Z/GPJhKfnJz/cS45rdPf4Ok9WPplH4yfR9LQEQVpxWufif42JxeKuf7elbCzXl0H/3Zoy6JZP+0f5e73Wj633tW5i2x+7C9mhdWpVctndzSee2+PnvbVLlfnsxm/tElMXMeRxZ7pVw8T1TLUumoiTfGoFK4b4V7n5lcdQXRSMO/R73Il1XrBuCx5N9k+um8vl3cF5iPPsNp5eF63hfB4pIeLcJuanNUpwXqrBT6yLyu2LjisZYfo6jzMJHp17OeqexHI+J1L91bP26+fkjt2W3RC7gYbWf0uhO26s+nmH1i2j1l7V0VtJtvIPjmJ0HV9tDOatmswp6/ggfrBLPo757AY5cX5G2/k+jzvTH10XZRYWmTi7h44saDLr+In0kgFH4+z6T6x3M/2nE0vGuaIuygyXMVoX5SMHoyQTzs9PfrhLj2vo0aD/1XVRq33uNI2OOxNncIkzt9KK14hB/yC9ucVZfL+o9VCmLqo+2k3yunX86L5nreODPtPrafNZ7TMxn+oihjzuTN9ZF42+r/zq2VtvHfwF7e53sfk4wa+iu+vCbv7BXsnff3fHbeXZOq7d7627/YcSS+5ysC46+Iv84GzGkW+rH1rnZXp+hoYrt2+u97r9R6/bcpd4oG1jMDkH66Iy/mScZfn5/9AurZbq+rX8/Xocdts/WReV68XWjhfVRRN1XdAhvnVwMELrx23Oo+v41vEm1/HliOazGz/IKqAuYsjjznTw702Dr1jYPbT9MflVDX+NvRk3Pv/z07jUPmpSrnuqcba7D8XZ9e/mmY8TT0UmeLB7q/8un/KhtTE/ZYeheZjOM9m+Ns7Lz0P5JFsRgiV196R3r7eWoeuqe1xDV+D9x3X1dT49P8GpD4KUs9c9ojj+Lv98wOP3i9b/Vn7V4uSn9NpuZPqX7fEu3SSDz8uNvq+VQ2SS3D1UbV8KZagj4wb91+I05YfI5FNOWtA+elzJ462GOjJu93iXV8xnVTxua5ehdr7P4870id9YOsez621NLNQ+V74eOLI7b+iUc3cwyMddPze8bh8ZorqCvIL3ryHBIttMzjlr3qpxFEWsT6uLgjs5t/EEe0+jv3L+dAfrIj7UWde5uuissK3fi4/GOSulNxnoO1hnn+748yWI4HyxPq0uAgAAKKmLAACAp1MXAQAAT6cuAgAAnk5dBAAAPJ26CAAAeDp10cY/y/rPCyZkWf7/v3z/s8a90/ZIt4d8ZyatsYK/K1f9Q3XX57n/U3f3jAsA8EwWW7/dXhdtl7v5pe9Zi+SbR/wJEmzcIFMXdTduoC4CALjN8xZbf28K/a1/yiqo2rLdpdq+fajVXhOsdeObSGXj7vbLtrHczsTZFWytfIL+u6y645ZJBnGG8lkb87N5NPvX3Ko3jnY3lFq3nnZx4vZydH86HQDgOg9bTpUFTNAh+HG0vaG1mi3X9PkOZf0wF6e771Aa8Y67/t04rXEz7Y2AA3VR9d5RtThpFTaZ9mrJ1EpSXQQAcNDDllPdj8nF94ta94Va/XuS94tG65nWQ6P3iw7WRYE4k8y4QZ5le6LOHLtfFG9vG8t/pFR9qBokWRcBAHDcw1Zao3VR8v7PaPt/rrhfFPS8+X5R4HhdlAn7DnVRJqy6CADg5R620urWOUGH7S2gkz5HtzZqgOkPksUxh+IE94sy9cbL66LW/aLjn6Prbg+FzX8wz+foAACu87zl1PT3KKzrfuPYly78qH5Ybvn9PQG78ib+/Fg1/mictSgh4jxbybTyiQfdbcfjZvIPjmvtfQqu2lLdrhYz8efo1t+FTau9lWTZDQCACZZTsK5v/ym1N08PAODTWWzBur594fHm6QEAfDqLLQAA4OnURQAAwNOpiwAAgKdTFwEAAE+nLgIAAJ5OXQQAADyduujDLH+W5c+y3Zhrr7bw150zc2Ss7r7JyJ91JbSyPfco3mFO3iGH0olZ3X90J75+AvB9vNB/mHPf1z/3nf7qldmdM3NkrE9ZoZ4b/56z9g7XwHs+Q/NZvVv+6iIAAl7oP8zPe3N582eo/adl6JbCz3/V9mr/9feSIgiy26vbPx43c1xxnLW3SBqah3h+knmWQ7cWba1JaI07uvgbOq744im3g/jbbLvtwbx1j2st5mfu/A4NmrwOg3FPOa7gvGyz6uaTeZ7m43TnITMVuyfOdDsAX8lr/Yc58X29XCR1B50Ya7fGaoXNLL/KdXy+f0uwwu4eTnfc0flJ5pmc3iCBctw4TjJsHL8bKnOd5KMF8VtGr9vR9uTQu/Yy7Gj8uedjED9OID/nQ3GOz0NmX3URwJN5rX+ufF205n4fnK9/qqG642bqolb/4Li67UfGHZ2fOM/ylB1Zv7YeSubTPa7M0MGxBOfxhrpo+2PQnjnv8aBxbtX8R6/z+Lx0n1+Z+R99XlcfjV83WttD8wwAAe8lzzW9nuiug0fXl61QB/tnnFUXZYJ/TV2UPK7M0K11f7xvvi5aa5OWTDJTF3Vjzg1dbR8ddyh4a6zq7nP1zFACQ/lkxgKALm8kD3XpOrj8hW7c3gqV7D+9XmzFSW7HjeWOmXmI8zy3Lhpdd7Y6j9a9rXOXn58b6qLMcU3UG8mh4+2DddHQ8zEz/6PP00ycYN9k/Zx8ZgHAD28bT7T8/kfY3QXE0viQTPDQbohg6GT8tbbkyueTnI14fo7Pw265WT2uIM+1N5ll/FY+yTiZSWuNG+xStifnJ3Nc1SHiw5k+ruq4ExfhWpufifPbDd7Kfy2uw7n5b8XJzFsrz9Y8dE96fvIBYFUXcQOrE17LFQgAdFkucK3R35rDiVx+AECS5QIAAPB06iIAAODp1EUAAMDTqYsAAICnUxcBAABPpy4CAACeTl30sf5Z1n/Sp+9v53z/Qctg4NH+E5bDYyzL0gqy/OfgEC/Ryvxzj2jCc44UAEiyOPhkyTrnsnLoRKcvU09Z+Lbqh+ORT8nk9GjXHdqr6pD7jxQA+FAWB59me+dnW/D8tLcar7lftCz/+69s3G5k+lcfms1qH2X5rdrejbMUMpn89OyOu+3Z6hz0nz6uoH103HgSys7Tx7X+nqUgTivJYBK6RwQAfB9v/x+lrHnK9u6PFyiXkdsKp/pot+VYPvvFd/XHuFu1pdXYTWO3iB/tNrSInzuu7o6tPDMyM9mNPzefQym1hgYAvp63/4/SKnji+0IvqouSj7ZajuUzcN9j9JbCXF0UtLfW8cm6aCj+aGKt+RmtHOIiJBk/qG8n8lT8AABbVgYfJaiL8ntd4P3rouqj3ZWxuqjaLX4o33/0Pk9QF03kqS4CALasDD5K8nN0wV7XOLcuOr5ejdf3F9VF5R2n5LijddF0/ZA5hEy37kPxiNV5GL1ftO2fzDN5dNX8AYCv5+3/0+y+d6H1Ubpq45Xfu7D8/gdFy++vXigfWnJfyTCbVfR5sMxD1falEAxa7tJt37bEjw4d1/TxJuehPORyHqr5Vw85eVy7gZK75POsPgQAfDFv/3ynm5e2FtN/3TkPRwZysgCAHYsDvtP9ddGdw72tq+chuE81GueslACA72BxAAAAPJ26iP/Z/cuf7n9PywcAgC9mOQkAADyduggAAHg6dREAAPB06iIAAODp1EXcavmzLH+W7caR9p+Hbsv/FLtjqXZ4ybivGuuUrOaOrrrXm1xRr7pObosfD/0mZyHvbZ9fX5bDOxx71XtmdalTzkUywtue95bRbG94PX+r16i3Xed80kXGFzilLqp26I570hGMaY37qhXtnfNw/5zPjfjO77Xvltt3Xz95T3t+nXW8Z/V/52sj49Pz37riWK4+7++2Hvj0ob9snfM9T04+QrW2GW0PLvqf34hUby7li6jtuOX2UJzquK04rSSHDmF03N1xtaauNUQr/6EpKhvLPLvxW3Fah1zGOZhP98rcDpec5+qj1+XZjZ9/HgXHlRl37jqcmOehmVnDeXjb51dy3FOOtxV/9Po5a9yJIarznDmPZfAyzyPPo/X3eT/lep6IM3Qd7jpvo3Uv/uPXW2t74joM8g/mJ3lc+eunmlIm/+C6Dc57/vxOnK98qOPjBse1i5N6zsBZti8oB9urF3d13/KhfJ7ldiulbpxdexAnOJCLxm29SFV/zLQn33Ja2VbzHE243OVInIl8WkG2G+Vw3ZyvzjOOn9y37JyZn+32kdeKiXm+9Hn9kufXaPx8qGoamfhHXoePjJsJnpnneNqTz8dMbq2wmedF3K2bdjfOxOtJfOz515kj19tZ12H+eht9/bz09Tz/+jMUthW8jDOUQBDzyLjJ1+GxiwPe0G49tP2v7DMaM7mdiZOJH7SUB3XiuNX+8XyW7ROva62emfehs+KMvp8dX4dVN+J5jgOem2cyfjJC/tLtvk+X11t8He42JtZPyVTnYt7w/Mq8GF50vKe/DnfHDeYziD+UZBwz+XzsxskPmpnnzPNuKM709VN9GiZb5vI5Zf7Xdv7x9Tb6+nnp63k3mduep3FL/sk7MW7ydXjs4OENtV4vqn1GYya3R8cdfb3IPzo3buv1IhP84Ot1tWfm/eCsOKPvZ9PHW+5YXSiUYyVPxFl5JuOP7j56+rr5d6dldJ6TeWaGzsS87fl1PM4V69SMI+OOOv4+knw+duMkBz3rek4e7/Hrp/Vqln+dOXK9Hb8Od/kffB9pjdJqOfg60E3mtudpcpQXvg4feh2Bl1gav9MafX2Ph4jHGo2T3K62HFzHTL9PJF90qvO/FL/yKVuCgebeD4KWfJ5z+QRHF+xYLhSGru2L8hyNn9l9aH7W3PnqXk7BPJdhq9vJVOdinvv86sY/sq4aOsbM9Xz1uBkT8zO6kpu+NkbzPDLPo++bE68n2yfg9OttJp+gz/HrcJf/We8jo/3nXs+7w43OSWbfoeO9+nWpFbOSWHdgeDc/L0/li8Ly+35o9aH8KNuByvhDccrXsupRVPMPDuqUcTOT1g0Vt6/tl6TgeOP5yeS59s5jq300n9YBxjMW59Ma6NI8k/OZvA6D62Gof/58Jec5vpiHpqgbJzOZ3VAT85kct3uko8cb53nPuEMXW3J+jpzHMpmheeiOu27meeJ6ruY/d36DIX7+H49bDpHPpzXPZZ4T12GQ/y7+0HG1+ufnv5v50PUZJJ8ZJZiceH6uHjdzUv73X3JsYM2tKSkNvdJ9qE85wE/JEz6d5xpXc42dzoRC1uhvMvjxrZM28futl/iUPOFreMZxEa/nlzKnAADA06mLAACAp1MXAQAAT6cuAgAAnk5dBAAAPJ26CAAAeDp1EQAA8HTqIgAA4OnURQAAwNOpiwAAgKdTFwEAAE+nLgIAAJ5OXQQAADyduggAAHg6dREAAPB06iIAAODp1EUAAMDTqYsAAICnUxcBAABPpy4CAACeTl0EAAA8nboIAAB4OnURr7csy7LcdCleOtZo5BuO+vgQwYwt/zlxOACAl7CI4VbBCvvlObyD03M7JWA1SL4RAOD9WcRwn+W33UNrcWvi58fqfYlWnLh9vWbtHgxaHlfcv/rQdFatPJPzWY2zFOJBAQDenxUMt2otmrfL62ppFASp7thqP6vkqGrVIcGj3ZYT8xmdtzir4FSO5gkA8HJWMNwqs5hubW8bM/c98uv+s8QVxcvrorVxXyi+/9PKSl0EAHwTKxhudVZdlAmuLoqjBTeyMnHURQDAN7GC4VaZ+ueUuqh1v6i8H3LiJ+vOrYuOZzX3ObpunHgvdREA8ImsYLhb8Dmu1narmMmEitvLHw8eVDxo+VBwaAdTWnvfl5B5KD6uVqjjmQMA3MwKBr7ZzVWKoggA+FAWMfDN1EUAABkWMQAAwNOpi+CX8h/PxJ6WDwDAV7KKAgAAnk5dBAAAPJ26CAAAeDp1EQAA8HTqIt5d8HUCH/1lA63MP/eI7mHeAIArWEbwAVrr4DfJ5PRo37e+N28AwJuzjOBWrS+Vjr9petc48eXU257dcbc9W52D/tPHFbSPjhtPgnkbmjcA4AksCLjPUpQ3cXvQ0mrsjrtdBwfjtroFK/Ju2snj6u7YyvN05g0AeA4rA24V/P4+uEVwYl0UtLfW8cn1/VD80cRa8zO0uO/O83R6Q9vdId5t3gCAJ7A44GVa9x+Cnt3G/O5l+zuv76vd4oeOM28AwHNYHHCf1rL13LqovBOSHHd0fd9d93/6+t68AQDPYXHAfYIPcQWfdyrbg89H/TwaDN1t37bEjw4d1/TxJudhP91nMG8AwENYEwAAAE+nLgIAAJ5OXQQAADyduggAAHg6dREAAPB06iIAAODp1EUAAMDTqYsAAICnUxfx7oI/vulPcwIAcAoLSj5AtfIZKodeVTtdPe63HhcAwM0sbrjV8lu1vbpXEKS7Rg86B8mstftR25btQ92DyhQS33pcAADvz5qG+5Rr97g9aGk1Jofujltd8bc6xHHySU741uMCALiZxQ23ytx/uK0uKoceGrF6UyUTJ0hy9FbMRxwXAMD7s7jhZVr3JYKe3cYjEY7UD0PjnuhbjwsA4GYWN9xnYv0ddIhvlQSdq+OO3lfZ9k/WD1fUEt96XAAAN/s/HsWi7l6p+5MAAAAASUVORK5CYII=" alt="" />
5,创建模块
模块提供了一种在应用程序之间共享Python代码的便捷方式.
模块中定义函数和类;
导入Python内置模块 or自定义的模块 import moduleName;
仅仅导入模块中的类或是函数from module import item;
6,如果模块被修改,使用imp.reload()函数重新加载模块新定义
import module;
import imp;
imp.reload(module);
6,修改模块搜索路径
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAApgAAACpCAIAAAAA6tq/AAATjUlEQVR4nO3dy5HlthWAYcbmbCwHMDk4AyUwCyXgLFzyygGoqte2qr2mFz2mKQLnhQcJgP9XKtVtXBAEQYCH575m++d/9r/8bf/Tn//6888/75jHtnVv/+u/+nageOQ8tjq5+n6nNnv/JceprznAG+YPLj4+PvZ9//z8zP5/I5ADADCyj48PKYp/fn6OGMjP94xN7h8H3y8AAAoycgAAJjZfRg4AAA5k5AAATIyMHACAiZGRN7Bt28bH3gAATzAy8l//pQXyb0L0ipZPRArYBHIAwCOMjFwP5Pu+f9u2bHiOlku2P7oUXh5L9fXG91xKnW1EaVxqBwCArqoy8kOn1DwbLJXHSn1lF+nmzv2a7QAA0FttRn7olJrrGXD2sTMd97fjDORmHQAAmhs6I7+QXs121jfrVGbkof0CANDE0O+R6y+Vp4HcrJ+GWDOQKxm55zEAAF0N/al15cNlRwV/faUw+9L9UZjGcqUk9MI+AACVmr1H/oj6eEnEBQBMrc175PdrkviSPQMAZjd3Rg4AwMvNmpEDAICdjBwAgKmRkQMAMDEycgAAJvbqjFz6uPqqH2N/6njfNs5PWXWcVz0uyduO9216nN8GGfm2/fjvhu4625e65G/BbLnmKCo3z3bJs6Pi41X2Lu3L2b5O3/Xl2eioOjtsNrvAfN6Tc51OdamC2cP0KX+zZcc1IOUimZ3JUiNdPXVdqtlLp8oF7Twbdxpk5M0v307SVSO0o5rO92g/RO/M5WpY1p9WS6XHOEiHXNNCQbWF57N+q5R9rMy30LbKvpQeNtd1nSoH+MjFs1X7BdelGyy8TvdWGXmT8qjodVy6I3Y2npZLaUT6WLrpzpan9S8NejrsubBWlusHVb9f6XydR8NsTRp/s35aTelSE+PMZ6nkMuzRoG5uqxxv8fw5j5K0Ts36nnWaTkvnlMuWh45Xuj5MdF2SSF1VTorUn4XX6b5YRl4woMpWZuXoY6kz0uTOrplsNecV0+ySs1B6Nl1sxfs1W/AsD7MD/qtPwXFFPTifLxFI2kQJVNnH5rRM9ysFGKn//m77+2muXyU4XQKJOWP9ezEr+8+L3vhT1yWpP0r9bPuebtcYKu4cOmbk9yvrScGCSc9NwYJJH9e0KV0N9a6a5dFA7v/Ts4vKwKyPg79Lna4Ipnvm8+X/yibZMJzWrAnknr3r1Y7C6Dr1LxZpXpkh0FlSUB4N3gNelxT+ofAcY3MPxp1Dx4z8frdd+JT6BVef5gtGL29ygciWDBjIdQTyVQO52Y5z1pWtNX8g909+f5c8xzvgdUkSGqKFA7luoIw8dI+mNJJ9rLdfHwV3x4KJXvhC9ZtMi+jC0Ee48h4i2760L7N+5X4LLhATzedoIE/3XjaHL/ttNX88f5qRT3kcDeShi4DSc6W8JpAPcl0yV7RnPqy9ThUDZeRtbwicE0XfdfaUmLHc7M+5ZEtenSurL/XHE/Ck8nNnpC5dOqZ3KbqqPUPhrF9c7jku50GV6Tefz4X6qU+7YU5aT/8v+201f6STW1Y/W66Pz/lBqJGy490dpyBbaC4u/RR76kv9l0ZDOa7o+nUaf516jmiUjDw09M1FBzrazmhaHe8s+73fGvN5NKxTqVw/olmOt17BTFhjnbbJyOuHY/ap1mQQsAxmwpiWXKd6Lr7e8UoKDnaZkeG31gEAmNirf2sdAIDZkZEDADAxMnIAACZGRg4AwMRekZGv+m2cVt42Pm87Xgnj8Ky3jT/feu3n1oy84RchPD84cP5TqqY37vxiftl3PBoOhVTu7FjN+NQcxSzzIduItKF5UJz3p877Udhq13qXGP9B1l3zQD7gHUCvjLzrTZA+ObYtU158jivbUXS9oHjWj6czziXUvP2QG+aD59m2jZTthfN+Kbk5kDP+l5JB1l3XcWjYTrGqjPx8O5Z9nN4lnStkm8reZPnvtloFYGmONryJ7jeHCu5wm4zPwvNBetY8qDsDCec92zfnoUUx/kqHR1t3BeOsDIUyaJ7xlCjjbLZTm5FnJ9ZuDdCljjLo2frpU+m2lWum4LjMQufcimpyQVG2Kh6fleZDaJN08TvbD+G8p0+l20ZHyY/xT59Ktx1/3Zk99BxCwfVf6kzovByMjPzvHQJ5+lifQHqb6Wzb5Jsjs0tlfdDLs53pqmxf0fExB3ml+RDapFPkNnHe007eufQY/7ST46y7JuMsbWI2conQ0vgoj/UuGRm5GciP/RWMWvMJpJdHT2STx54ONHfPBUVvZ7H5ENpk7UCutzP+ee+H8feUTxHI9Qr+QB4VPS+H2ox8d0wg83F02+KoWTDbOh2XQrrnClGGSGm/fjXui86HUPkm32UrOO+3nXepJuMf2na6ddfkhsAskcbTwzPOUiCvzcilHm/qJwU2+dWGUH2pP9lnQxMibeFcLnVeKXeqv5pc9p4tD+1aGgdl157+zDIfdvlUpuVSD02c9/2u8+7vfAHG3+zwU+suOs5pO56nnPWlnpiNZ5tqkJHv7dZAb9GFdL/Qpb/H3kPl0XZGM8584Lw/i/G/01Prbpz1LinuSW1GHrrnhWn2kWQ+lJl9xGY/7/P2/Mvs44+97iS2ycgBAMAj2rxHDgAAHkFGDgDAxMjIAQCYGBk5AAATIyMHAGBiXTLy0b6UyXczAACr6pWRDxXI9XIAAObV4F8/O/903Ln8/Kz+E4BpO/762aekrgIAsJiqjDz98dv0qWyhXidbLtU3/zTLAQCYV1VGroRG6W3pbCatBGwp8w79Er3ZWwAAJmVl5L+XB/K0QjTDdobettUAAJiIlZFHAnnopXUpI1cydc9+FQRyAMB6qjLyXf33ay8V0j+V8mz70kvuTgRyAMB6qjLyTjpFXAI5AGA9tRl5KwUZdkHjAAAsZsSMHAAAOI2SkQMAgAJk5AAATIyMHACAiZGRAwAwMTJydLf9whcGAKAXMvIGtm3bZvtym9TnS+H2y/YVho8Hl6fS8kybQoVzC6Fg768s9X+68wUAkqqM/JtwNYyWT0QKADMGhppALj0W9yXH8lA7UQRyAMurzci/bVs2PEfLJdsfXQovj6X6euN7Lj3NNqI0LrXjOS6zP2X91OvvuWCWKflf8PNH3Gx6HQrk5xbSGwjltYG0Qrb/P0qI5QCW0OY98k6peTZYKo+V+sou0s2d+zXbUXaqtJ9tp6Cfev3sPUe/QC5t5cnyPbcF5rYEcgCravYeeafUXM+As4+z9ZX2zXacgdysc6lvtu+5cQm1Y97oeAet6DVwKZBLSbayoT+Qa/0hkANYwtAZ+UU2DimXY2dATR+XZeT+/fpvSkL9NNscM5Bnn40G8qMw8Dk4AjmAJRgZ+a//fvI9cj3wpIHcrK+HLs9L0NHH2f22ar8mkJujoVMCrfIR9LKXxAnkAKAwMnI9kPdOxKXXjc8V/PWVwmysPQrTWKuUSM9K+71UMPvjOWSlP8pxpeOpk7425g/kaQvp59ouDerfWIt9h41ADmAJtRn5s+qvxaNdzaX+3NbPrjvq/cswpOMAXqgqI39QNj19pJGGpP7c2c9xRiMk+qsykx4mAKTmzsgBAHi5WTNyAACwk5EDADA1MnIAACZGRg4AwMTIyAEAmBgZeQNDfYcNAPAqQ/+y24Ae/8EWAADOhv6t9b3iJ0g9WbL+Y6VpI0rjUjsAAHTV5j1y/j3ybDsAAPTW7D1y/j1ysw4AAM0NnZFfSK9mO+ubdSoz8tB+AQBoYuj3yPWXytNAbtZPQ6wZyJWM3PMYAICuhv7UuvLhsqOCv75SmH3p/ihMY7lSEnphHwCASnN/j7w+XhJxAQBTm/WX3ZokvmTPAIDZzZ2RAwDwcrNm5AAAYCcjBwBgamTkAABMjIwcAICJvTojlz6uvurH2J863reN81NWHedVj0vytuN9mx7nt0FGvm0//ruhu872pS75WzBbrjmKys2zXfLsqPh4lb1L+3K2r9N3fXk2OqrODpvNLjCf9+Rcp1NdqmD2MH3K32zZcQ1IuUhmZ7LUSFdPXZdq9tKpckE7z8adBhl588u3k3TVCO2opvM92g/RO3O5Gpb1p9VS6TEO0iHXtFBQbeH5rN8qZR8r8y20rbIvpYfNdV2nygE+cvFs1X7BdekGC6/TvVVG3qQ8Knodl+6InY2n5VIakT6Wbrqz5Wn9S4OeDnsurJXl+kHV71c6X+fRMFuTxt+sn1ZTutTEOPNZKrkMezSom9sqx1s8f86jJK1Ts75nnabT0jnlsuWh45WuDxNdlyRSV5WTIvVn4XW6L5aRFwyospVZOfpY6ow0ubNrJlvNecU0u+QslJ5NF1vxfs0WPMvD7ID/6lNwXFEPzudLBJI2UQJV9rE5LdP9SgFG6r+/2/5+mutXCU6XQGLOWP9ezMr+86I3/tR1SeqPUj/bvqfbNYaKO4eOGfn9ynpSsGDSc1OwYNLHNW1KV0O9q2Z5NJD7//TsojIw6+Pg71KnK4Lpnvl8+b+ySTYMpzVrArln73q1ozC6Tv2LRZpXZgh0lhSUR4P3gNclhX8oPMfY3INx59AxI7/fbRc+pX7B1af5gtHLm1wgsiUDBnIdgXzVQG6245x1ZWvNH8j9k9/fJc/xDnhdkoSGaOFArhsoIw/doymNZB/r7ddHwd2xYKIXvlD9JtMiujD0Ea68h8i2L+3LrF+534ILxETzORrI072XzeHLflvNH8+fZuRTHkcDeegioPRcKa8J5INcl8wV7ZkPa69TxUAZedsbAudE0XedPSVmLDf7cy7ZklfnyupL/fEEPKn83BmpS5eO6V2KrmrPUDjrF5d7jst5UGX6zedzoX7q026Yk9bT/8t+W80f6eSW1c+W6+NzfhBqpOx4d8cpyBaai0s/xZ76Uv+l0VCOK7p+ncZfp54jGiUjDw19c9GBjrYzmlbHO8t+77fGfB4N61Qq149oluOtVzAT1linbTLy+uGYfao1GQQsg5kwpiXXqZ6Lr3e8koKDXWZk+K11AAAm9urfWgcAYHZk5AAATIyMHACAiZGRAwAwsVdk5Kt+G6eVt43P245Xwjg8623jz7de+7k1I2/4RQjPDw6c/5Sq6Y07v5hf9h2PhkMhlTs7VjM+NUcxy3zINiJtaB4U5/2p834Uttq13iXGf5B11zyQD3gH0Csj73oTpE+ObcuUF5/jynYUXS8onvXj6YxzCTVvP+SG+eB5tm0jZXvhvF9Kbg7kjP+lZJB113UcGrZTrCojP9+OZR+nd0nnCtmmsjdZ/rutVgFYmqMNb6L7zaGCO9wm47PwfJCeNQ/qzkDCec/2zXloUYy/0uHR1l3BOCtDoQyaZzwlyjib7dRm5NmJtVsDdKmjDHq2fvpUum3lmik4LrPQObeimlxQlK2Kx2el+RDaJF38zvZDOO/pU+m20VHyY/zTp9Jtx193Zg89h1Bw/Zc6Ezovh9r3yGsCnnMC6W2ms22Tb47MLpX1QS/Pdqarsn1Fx8cc5JXmQ2iTTpHbxHlPO3nn0mP8006Os+6ajLO0idnIJUJL46M81rvU7F8/Kxi15hNIL4+eyCaPPR1o7p4Lit7OYvMhtMnagVxvZ/zz3g/j7ymfIpDrFfyBPCp6Xg7N/vWzgklQPIGKo2bBbOt0XArpnitEGSKl/frVuC86H0Llm3yXreC833bepZqMf2jb6dZdkxsCs0QaTw/POEuBvMGn1qWzlY7sUbLJrzaE6kv9yT4bmhBpC+dyqfNKuVP91eSy92x5aNfSOCi79vRnlvmwy6cyLZd6aOK873edd3/nCzD+ZoefWnfRcU7b8TzlrC/1xGw821Sb75G3WgO9RRfS/UKX/h57D5VH2xnNOPOB8/4sxv9OT627cda7pLgnDT61/uwaWMzsI8l8KDP7iM1+3uft+ZfZxx973Unkt9YBAJjYK35rHQCAVZGRAwAwMTJyAAAmRkYOAMDEyMg7Gv/bDgCA2XXJyMf8Umardvxf8I8G8uivB5gNOivz3RUAmNfd/x75DboG8suvCxV3xlPeaQx5nQAAVtLgXz87/3TcuXzPJa/Rn6Ar+6m8JrKZq17fv0kokKcDctmpOZie+wMCOQDMqCojTyNK+pQSQqQ62XKpvvlnsSaBXNkqlPHrkVgvcY4PgRwAZlSVkSuXfult12wmrQRsKfMuey+5Utm+ooHcfJmhMpBH+wkAGFmzjDz7lDN1dpbr+7rBPYE8+2w0kO/CKVAQyAFgRh8fH7/JYoE89NK6lJErmbpnv4om6bv+knXNO+J6+9J75Er7BHIAeIOvQC49G/iwmxKMpT+V8mz70kvuTg3fO1feNQjtOnsrYN76+IcidMgEcgCY0RHIP3Oe+UGYHhHl5nfT072Hynvvt74yAGAQowTy3h9ee1uUCg1m15EHAHQ1SiAHAAAFCOQAAEzsK5B/FxDIAQAY2sfHx08yAjkAAEOr+h45AAB4Vu33yAEAwIP4sBsAABOrCuTfhK8eR8sBAECZ2oz827Zlw3O0HAAAFGjz0jqpOQAAj2j2HjmpOQAA90sD+XZGRg4AwMiyGXkgkJOIAwDwIOmldVcgJxEHAOBZynvkgZfWAQDAI/hBGAAAJkYgBwBgYgRyAAAmRiAHAGBiX4H8u2D7x+8/AvkHAAAY0k+y/wfybMIOAMCMpPz1Zvu+994FgRwAsKDv378/3YXPz8/Pr0DedRcEcgDAggjkAABM7D2B/L/gpvktAULjWwAAAABJRU5ErkJggg==" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAASAAAADUCAIAAACzlWlsAAAJtklEQVR4nO3dQXajMBBFUe0628g0q6UH7nYTpCpVCb4R8O7JwJGFVGC+cWzrpPz8/CwDShnZClfH455U0gEr5e8PHoXHfUg+YADCCBggRMAAIQIGCBEwQIiAAUJnB+yr/P3RKNm3lY+rJD31BEopVtlX3J0ZtAP2ZRzNbHuHLFczmPyMzAZp8t2ZlnkF+yqlGZtse9v7wlVfwZzGJXHFK/+kS6ob1zdi6nnLb3WR1l2RvdgMYs3rF7OuvDmpkz3iZ+m8RNReyupTtj6/17fzV7wDXiKu5w0X0Dxrm782b/ubWzPWmwfn7Y4T3wQb/b/BhJeybMDyjglYvgb/Cmb1tC4y2RkjFysnLVYfUjTgUlewvHkC5tz7flU2NlrdZ+cVzK8TKSf9DfZvm07LXQIW+TV+Znf/QGoGzLmCRW7Xv/r14OWkdxHH3uTIvKdvvTSKlrRp3NwOzJ4qJtXfaWy+BH031hlzWpr3WjtLwCxnfw52X6lzbv8Jqj7FidAYAqYSPCMT11jxIN0pdIPfGAEDhAgYIETAACECBggRMECIgAFCBOyX7/J91FCRD5StbrgNAjaoG8X452BHlINJ3TNg3+X7FYD3jWZ7fdcmNv44zU1enK8yRTrjNu4ZsOV3JJoZs7aKj+PM7nxtL94ZN3DngHVv+1vtGYeA4YWAmVvtGYeA4YWAmVvFx6m3ImB4uXPAnHcyrPczNnetfw2+L/Lir9eql2zt21fM684BO7cA3qbHcteAOdeWjyFgWO4aMGASBAwQImCAEAEDhAgYIETAACECBggRMECIgAFCBAwQImCAEAEDhAgYIETAACECBggRMECIgAFCBAwQImCAEAEDhAgYIETAACECBggRMECIgAFCBAwQImCAEAEDhAgYIETAACECBggRMECIgAFCBAwQImCAEAEDhAgYIETAACECBggRMECIgAFCBAwQImCAEAEDhAgYIETAACECBggRMECIgAFCBAwQImCAEAEDhAgYIHRMwErZP8aM1Pt11+OGNy9gpfz/6YxidFiPsOdk2rl5s6TIRN39cmaxxrS6ZTvUw2aPUrCwAw/+A5kBi5xnVn/1OMP8Yl4t9Vm7v55gFLOsXdgzwp5uqLUD5h/Q5lNaKmDrK0DzdvPpuTl1s/9mwG5hm9qy+9Wsxyo+Pr51nNd7163KfwXhjx+pH77DAmZtZV00IretSSNhaPav76q3DT53dA+RM2MwY37PyNNcd6L4s0/2lQheRgJmjmWciN1n7mDA6tt7xqxP1kip3Tq7hXV/3bOhc3mPBHJ/wdj4RMD8/gMvyQ4PmN+eujJ3C+v+umfDbBIImNrImxzOC/H4c+T7roGQDAcse6l0GrMBS/V3xrHG7PaPjO+Mw0vEMaG36Zvt1iaREaz+1lbrls29zdc/kf5WPcET13rpVbdblfjHoTv+8vuBiNeTbY/UD8vB3+TIHv2rPFrqOq9yHJB12leleDrEE/BdRECIgAFCBAwQImCAEAEDhFgPtizXr99y1/26kA+tB1uq9+WtDzSbnwj7lQx/0LxuvArno/C6/QMf3x01ReQLAIfM8mEnrwdrfkPC39Y5h1LbOnMpHH5+RG4fNa8zjnS/1i0XehJcO2c9mNXiXFgiYetu6+xX9yLcvbpG+jcvMs3O3bKDZ7xzzV+qh9LaL7/+epzmfjnzRuoPBswq1Tn4fj07fWg9mPUkpA5YPa91osTLi9fjP7k4/esHvnmadgf0G+PH2RrEGsc/Dk637gPalX1Wcuo5xIeWq6QC1ux/VMAis28anWfu5u1u/2Zn/0wdeDroTj18uztO9onJ6dw8Pl3xQxHZxz0IWKf+bn9nq+wVrG6PByxYRqS25n6dErBIe6rnLAHzJ3aeS6wdyAasnmXswdvMa40Zqcf6tXumOrezARu+1KROrG7AsvuV6p86tbKBmShgy+oC3Wy3NrEamyldT1Gql0mb29a8Tp1L6wj6Q/lF7unfbPePw/pGahC/ziVwSJuN9TOU//AN9G9y9trZr+bUTrvCyevBZpOt/yr7G3kuj997J+o95atSg6RPe2oDLwdu6QM7S8AAIQIGCBEwQIiAAUIEDBBiPZjnrvuFj+H/g3kTRfYrMvij3vvGGv8fbNtSZ8YfKtsfj8L/B2vUNrxfwf6bdvW3dXAi/j9YZ0yrpEMCFgwzrov/D7Yt0i91bC6/ncvXjfH/wfrth1+Z+TvtOfj/YKGC4y8pj6of98D/BwsVbO2X024V6bTjfvj/YCFXqROz4f+DAUJ8FxEQImCAEAE7Ryml8Pr4AQjYOQjYQxCwcxCwh2A9mEe3XwTsIVgP5k3kTxr8wN345JqAPQLrwbYtqa8vBasiYI/FerBGbZH9su7tFv/vNgF7BNaDdcZ0SvKrdWYshYA9BevBtkX6pTqDOO2tvBGwR2A9WL+dgGEY68FCBac6NwvjJeIzsR4sVLB1EJypNwVUVRGwR2A9WMjhdRKwh2A92DkI2EPwXcRzELCHIGDnIGAPQcAAIQIGCBEwQIj1YIAQ68FUEwHL2Feluv3V4wzzi2l+dQvYg/VgjdqAo7AerDMmsAfrwbZF8mcYDsR6sGg7MID1YImCgSzWg+UKBlJYDwYIsR4MEOK7iIAQAQOECBggRMAAIQIGCLEezKPer7seN7yxHsybyJ80+IF76osvQZMnkw9g3lgPtm0JfjcyVVX2uywDZjuhZ6vnLKwHa9QW2S/r3m7xwfGtQ2EN4hy3+CsI57h1x19aj3W9VXCceP/Jr5asB+uM6ZTkV+vM2M1YtoNVSerJ4t0nfpytA+70SY1zyJPguVgPti0yfpEJVpv9tS4pMm93EOuy4ITfOUTOpJv+fknNcYJ1zn/5Wj4TML9/8GyWBsxvPyVg2ZKyBz8yV/ZKUvcJ7vjA+M6wU2E9WKjgVOdmYf7U2QT6LdkTNDVO5MrjbNsdJ3KFzD5DnYj1YKGCrYPgTL0pwJ/aOm51/8hdwf5NkcGDx79ZVXeczdFo1p/dqROxHixEXec8x2GGSmao4SisB8N/Jz4oV7kiZfFdRECIgAFCBAwQImCAEAEDhFgPBghNuh6MxOIeplsPBtzJmevBmqMFv6dDVnEJ060Hi7SQLlzFdOvBIi0EDFfxufVgOwP2biRduJCPrgfr/j3mjLMQMFzQp9eD1e9nbAb039knXbiWk9eDzTY+cKzLfFWKd+dxRZcJGHBFBAwQImCAEAEDhAgYIETAACECBgi1A/ZlfN6UbQcezryCfZXSjE22HXiyzktELmXAHv2/wbiUAcO4ggFC/A0GCPEuIiDE52CAEAEDhAgYIETAAKE/pHR0YLUWGl4AAAAASUVORK5CYII=" alt="" />
python 重要模块的更多相关文章
- Python标准模块--threading
1 模块简介 threading模块在Python1.5.2中首次引入,是低级thread模块的一个增强版.threading模块让线程使用起来更加容易,允许程序同一时间运行多个操作. 不过请注意,P ...
- Python的模块引用和查找路径
模块间相互独立相互引用是任何一种编程语言的基础能力.对于“模块”这个词在各种编程语言中或许是不同的,但我们可以简单认为一个程序文件是一个模块,文件里包含了类或者方法的定义.对于编译型的语言,比如C#中 ...
- Python Logging模块的简单使用
前言 日志是非常重要的,最近有接触到这个,所以系统的看一下Python这个模块的用法.本文即为Logging模块的用法简介,主要参考文章为Python官方文档,链接见参考列表. 另外,Python的H ...
- Python标准模块--logging
1 logging模块简介 logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级.日志保存路径.日志文件回滚等:相比print,具备如下优点: 可以通过设置不同 ...
- python基础-模块
一.模块介绍 ...
- python 安装模块
python安装模块的方法很多,在此仅介绍一种,不需要安装其他附带的pip等,python安装完之后,配置环境变量,我由于中英文分号原因,环境变量始终没能配置成功汗. 1:下载模块的压缩文件解压到任意 ...
- python Queue模块
先看一个很简单的例子 #coding:utf8 import Queue #queue是队列的意思 q=Queue.Queue(maxsize=10) #创建一个queue对象 for i in ra ...
- python logging模块可能会令人困惑的地方
python logging模块主要是python提供的通用日志系统,使用的方法其实挺简单的,这块就不多介绍.下面主要会讲到在使用python logging模块的时候,涉及到多个python文件的调 ...
- Python引用模块和查找模块路径
模块间相互独立相互引用是任何一种编程语言的基础能力.对于"模块"这个词在各种编程语言中或许是不同的,但我们可以简单认为一个程序文件是一个模块,文件里包含了类或者方法的定义.对于编译 ...
- Python Paramiko模块与MySQL数据库操作
Paramiko模块批量管理:通过调用ssh协议进行远程机器的批量命令执行. 要使用paramiko模块那就必须先安装这个第三方模块,仅需要在本地上安装相应的软件(python以及PyCrypto), ...
随机推荐
- poj 1088 动态规划+dfs(记忆化搜索)
滑雪 Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Description Mi ...
- ZOJ3477&JAVA大数类
转:http://blog.csdn.net/sunkun2013/article/details/11822927 import java.util.*; import java.math.BigI ...
- GridFS
GridFS是一个建立在MongoDB文档基础之上的轻量级的文件存储规范. GridFS的一个基本思想就是可以将一个大文件分成很多块.每块作为一个单独的文档存储. GridFS支持在文档中存储二进制数 ...
- Python 自动化脚本学习(一)
Python 基础 命令行:在http://www.python.org安装python3,Mac下输入python3进入命令行 整数,浮点数,字符串类型:-1,0.1,'game' 字符串连接和复制 ...
- kiki's game
欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) kiki's game Time Limit: 5000/1000 MS (Java/Others) Memory Limit: ...
- RequireJs运行原理
在require中,根据AMD(Asynchronous Module Definition)的思想,即异步模块加载机制,其思想就是把代码分为一个一个的模块来分块加载,这样无疑可以提高代码的重用. 在 ...
- 【欧拉函数】【HDU1286】 找新朋友
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- 推荐10款 好用的 Jquery 评分插件
Raty jQuery Raty这是一个能够自动生成可定制的星级评分jQuery插件.可以自定义图标,创建各种评级组合,星星数量,每一颗星星的注释,可以在当一个星星被点击时的加回调函数. 地址: Ra ...
- [Effective C++系列]-为多态基类声明Virtual析构函数
Declare destructors virtual in polymorphic base classes. [原理] C++指出,当derived class对象经由一个由base clas ...
- 简单的JQuery top返回顶部
一个最简单的JQuery Top返回的代码,Mark一下: HTML如下: <div id="backtop"> <a href="javascript ...