POJ 2112 Optimal Milking (二分+最短路径+网络流)
POJ 2112 Optimal Milking (二分+最短路径+网络流)
Time Limit: 2000MS | Memory Limit: 30000K | |
Total Submissions: 10176 | Accepted: 3698 | |
Case Time Limit: 1000MS |
Description
Each milking point can "process" at most M (1 <= M <= 15) cows each day.
Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine.
Input
* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line.
Output
Sample Input
2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0
Sample Output
2
Source
告诉它们间的路径,问所有牛中,走得最远的那头牛,走了多远?
#include <iostream>
#include <cstdio>
#include <queue>
#include <cstdlib>
using namespace std; const int maxn=300;
const int inf=1<<28;
struct edge{
int u,v,next,f;
edge(int u0=0,int v0=0,int f0=0,int next0=0){
u=u0,v=v0,f=f0,next=next0;
}
}e[maxn*maxn];
int head[maxn*2],visited[maxn*2],path[maxn*2],a[maxn][maxn];
int cnt,from,to,marked,K,C,M; void ini(){
from=0;to=K+C+1;
} void initial(){
cnt=0;marked=1;
for(int i=0;i<=to;i++){
head[i]=-1;
visited[i]=0;
}
} void adde(int u,int v,int f){
e[cnt].u=u,e[cnt].v=v,e[cnt].f=f,e[cnt].next=head[u],head[u]=cnt++;
e[cnt].u=v,e[cnt].v=u,e[cnt].f=0,e[cnt].next=head[v],head[v]=cnt++;
} void input(){
int c0,n=K+C;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
scanf("%d",&c0);
if(c0>0) a[i][j]=c0;
else a[i][j]=inf;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(a[i][k]+a[k][j]<a[i][j]) a[i][j]=a[i][k]+a[k][j];
}
} void build(int x){
initial();
for(int i=1;i<=K;i++) adde(from,i,M); //机器 1 - K 编号
for(int i=K+1;i<=K+C;i++) adde(i,to,1); //牛 K+1 - K+C 编号
for(int i=1;i<=K;i++){
for(int j=K+1;j<=K+C;j++){
if(a[i][j]<=x) adde(i,j,1);
}
}
} bool bfs(){
int s=from,d;
queue <int> q;
q.push(s);
marked++;
visited[s]=marked;
while(!q.empty()){
s=q.front();
q.pop();
for(int i=head[s];i!=-1;i=e[i].next){
d=e[i].v;
if(visited[d]!=marked && e[i].f>0){
visited[d]=marked;
path[d]=i;
q.push(d);
if(d==to) return true;
}
}
}
return false;
} int maxf(int x){
build(x);
int maxflow=0;
while(bfs() ){
int offflow=inf;
for(int i=to;i!=from;i=e[path[i]].u){
offflow=min(e[path[i]].f,offflow);
}
for(int i=to;i!=from;i=e[path[i]].u){
e[path[i]].f-=offflow;
e[path[i]^1].f+=offflow;
}
maxflow+=offflow;
}
return maxflow;
} void computing(){
int l=1,r=200000;
while(l<r){
int mid=(l+r)/2;
if(maxf(mid)>=C) r=mid;
else l=mid+1;
}
cout<<r<<endl;
} int main(){
while(cin>>K>>C>>M){
ini();
input();
computing();
}
return 0;
}
POJ 2112 Optimal Milking (二分+最短路径+网络流)的更多相关文章
- POJ 2112 Optimal Milking (二分 + 最大流)
题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...
- POJ 2112 Optimal Milking (二分+最短路+最大流)
<题目链接> 题目大意: 有K台挤奶机和C头奶牛,都被视为物体,这K+C个物体之间存在路径.给出一个 (K+C)x(K+C) 的矩阵A,A[i][j]表示物体i和物体j之间的距离,有些物体 ...
- POJ 2112 Optimal Milking (二分 + floyd + 网络流)
POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...
- Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)
题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...
- POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】
Optimal Milking Time Limit:2000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ 2112 Optimal Milking (Dinic + Floyd + 二分)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 19456 Accepted: 6947 ...
- POJ 2112: Optimal Milking【二分,网络流】
题目大意:K台挤奶机,C个奶牛,每台挤奶器可以供M头牛使用,给出奶牛和和机器间的距离矩阵,求所有奶牛走最大距离的最小值 思路:最大距离的最小值,明显提示二分,将最小距离二分之后问题转化成为:K台挤奶机 ...
- POJ 2112 Optimal Milking【网络流+二分+最短路】
求使所有牛都可以被挤牛奶的条件下牛走的最长距离. Floyd求出两两节点之间的最短路,然后二分距离. 构图: 将每一个milking machine与源点连接,边权为最大值m,每个cow与汇点连接,边 ...
- POJ 2112 Optimal Milking 最短路 二分构图 网络流
题意:有C头奶牛,K个挤奶站,每个挤奶器最多服务M头奶牛,奶牛和奶牛.奶牛和挤奶站.挤奶站和挤奶站之间都存在一定的距离.现在问满足所有的奶牛都能够被挤奶器服务到的情况下,行走距离的最远的奶牛的至少要走 ...
随机推荐
- BZOJ 3907: 网格( 组合数 + 高精度 )
(0,0)->(n,m)方案数为C(n,n+m), 然后减去不合法的方案. 作(n,m)关于y=x+1的对称点(m-1,n+1), 则(0,0)->(m-1,n+1)的任意一条路径都对应( ...
- Servlet学习的两个案例之网站访问次数的统计
一.统计次数的Servlet源码 package com.shanrengo; import java.io.IOException; import javax.servlet.ServletCont ...
- NSUserDefaults概述
原创,转载请注明原文:NSUserDefaults概述 By Lucio.Yang 首先,iOS中有四种存储数据的方式-对比iOS中的四种数据存储 NSUserDefaults是其中很常用的一种.N ...
- Android编程获取网络连接状态(3G/Wifi)及调用网络配置界面
随着3G和Wifi的推广,越来越多的Android应用程序需要调用网络资源,检测网络连接状态也就成为网络应用程序所必备的功能. Android平台提供了ConnectivityManager 类,用 ...
- HDU4648+Easy
N^2都能过!!!!!!! /* Easy */ #include<stdio.h> #include<string.h> #include<stdlib.h> # ...
- 简单浮点数除法模拟-hdu-4493-Tutor
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4493 题目意思: 给小数点后两位的12个月的工资,求出平均工资,输出离小数点后第二位最近的两位小数, ...
- 关于方法的ref
没有ref的方法时: using System; using System.Collections.Generic; using System.Linq; using System.Text; usi ...
- c++,基类声明的指针变量和引用类型变量可以指向派 生类的对象
基类声明的指针变量和引用类型变量可以指向派生类的对象,而反过来派生类的指针却不能指向基类变量. 这与基类和派生类之间,被允许的赋值方向是相反的. 但是从逻辑上很容易推敲其合理性.
- reStructuredText(.rst)语法规则快速入门
原文:http://blog.useasp.net/archive/2014/09/05/rst-file-restructuredtext-markup-syntax-quikstart.aspx? ...
- iOS: 在键盘之上显示一个 View
如 AlertView,当 show 一个 Alert 时,它会覆盖在 Keyboard 上面,不影响显示的效果.那么我们自己创建的 View 如何像 Alert 那样不被键盘盖住呢?很简单,拿到 A ...