POJ  2112 Optimal Milking (二分+最短路径+网络流)

Optimal Milking
Time Limit: 2000MS   Memory Limit: 30000K
Total Submissions: 10176   Accepted: 3698
Case Time Limit: 1000MS

Description

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.

Each milking point can "process" at most M (1 <= M <= 15) cows each day.

Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine. 

Input

* Line 1: A single line with three space-separated integers: K, C, and M.

* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line. 

Output

A single line with a single integer that is the minimum possible total distance for the furthest walking cow. 

Sample Input

2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0

Sample Output

2

Source



题目大意:这题的主要意思就是,K台机器,C头牛,每台机器可供M个牛,然后K+C行以及列
告诉它们间的路径,问所有牛中,走得最远的那头牛,走了多远?

解题思路:二分最远距离,floyd最短路径算出牛到每台机器的距离,根据二分的距离来构造图的连通性,构造网络图后用网络流计算最大流量是否为牛的总数,一步步二分得到结果。


#include <iostream>
#include <cstdio>
#include <queue>
#include <cstdlib>
using namespace std; const int maxn=300;
const int inf=1<<28;
struct edge{
int u,v,next,f;
edge(int u0=0,int v0=0,int f0=0,int next0=0){
u=u0,v=v0,f=f0,next=next0;
}
}e[maxn*maxn];
int head[maxn*2],visited[maxn*2],path[maxn*2],a[maxn][maxn];
int cnt,from,to,marked,K,C,M; void ini(){
from=0;to=K+C+1;
} void initial(){
cnt=0;marked=1;
for(int i=0;i<=to;i++){
head[i]=-1;
visited[i]=0;
}
} void adde(int u,int v,int f){
e[cnt].u=u,e[cnt].v=v,e[cnt].f=f,e[cnt].next=head[u],head[u]=cnt++;
e[cnt].u=v,e[cnt].v=u,e[cnt].f=0,e[cnt].next=head[v],head[v]=cnt++;
} void input(){
int c0,n=K+C;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
scanf("%d",&c0);
if(c0>0) a[i][j]=c0;
else a[i][j]=inf;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(a[i][k]+a[k][j]<a[i][j]) a[i][j]=a[i][k]+a[k][j];
}
} void build(int x){
initial();
for(int i=1;i<=K;i++) adde(from,i,M); //机器 1 - K 编号
for(int i=K+1;i<=K+C;i++) adde(i,to,1); //牛 K+1 - K+C 编号
for(int i=1;i<=K;i++){
for(int j=K+1;j<=K+C;j++){
if(a[i][j]<=x) adde(i,j,1);
}
}
} bool bfs(){
int s=from,d;
queue <int> q;
q.push(s);
marked++;
visited[s]=marked;
while(!q.empty()){
s=q.front();
q.pop();
for(int i=head[s];i!=-1;i=e[i].next){
d=e[i].v;
if(visited[d]!=marked && e[i].f>0){
visited[d]=marked;
path[d]=i;
q.push(d);
if(d==to) return true;
}
}
}
return false;
} int maxf(int x){
build(x);
int maxflow=0;
while(bfs() ){
int offflow=inf;
for(int i=to;i!=from;i=e[path[i]].u){
offflow=min(e[path[i]].f,offflow);
}
for(int i=to;i!=from;i=e[path[i]].u){
e[path[i]].f-=offflow;
e[path[i]^1].f+=offflow;
}
maxflow+=offflow;
}
return maxflow;
} void computing(){
int l=1,r=200000;
while(l<r){
int mid=(l+r)/2;
if(maxf(mid)>=C) r=mid;
else l=mid+1;
}
cout<<r<<endl;
} int main(){
while(cin>>K>>C>>M){
ini();
input();
computing();
}
return 0;
}


POJ 2112 Optimal Milking (二分+最短路径+网络流)的更多相关文章

  1. POJ 2112 Optimal Milking (二分 + 最大流)

    题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...

  2. POJ 2112 Optimal Milking (二分+最短路+最大流)

    <题目链接> 题目大意: 有K台挤奶机和C头奶牛,都被视为物体,这K+C个物体之间存在路径.给出一个 (K+C)x(K+C) 的矩阵A,A[i][j]表示物体i和物体j之间的距离,有些物体 ...

  3. POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...

  4. Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)

    题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...

  5. POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】

    Optimal Milking Time Limit:2000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Sub ...

  6. POJ 2112 Optimal Milking (Dinic + Floyd + 二分)

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 19456   Accepted: 6947 ...

  7. POJ 2112: Optimal Milking【二分,网络流】

    题目大意:K台挤奶机,C个奶牛,每台挤奶器可以供M头牛使用,给出奶牛和和机器间的距离矩阵,求所有奶牛走最大距离的最小值 思路:最大距离的最小值,明显提示二分,将最小距离二分之后问题转化成为:K台挤奶机 ...

  8. POJ 2112 Optimal Milking【网络流+二分+最短路】

    求使所有牛都可以被挤牛奶的条件下牛走的最长距离. Floyd求出两两节点之间的最短路,然后二分距离. 构图: 将每一个milking machine与源点连接,边权为最大值m,每个cow与汇点连接,边 ...

  9. POJ 2112 Optimal Milking 最短路 二分构图 网络流

    题意:有C头奶牛,K个挤奶站,每个挤奶器最多服务M头奶牛,奶牛和奶牛.奶牛和挤奶站.挤奶站和挤奶站之间都存在一定的距离.现在问满足所有的奶牛都能够被挤奶器服务到的情况下,行走距离的最远的奶牛的至少要走 ...

随机推荐

  1. r语言之散点图类型type参数

    type参数用来控制所生成散点图的类型,有如下几个选项: type=“p”表示绘制单独的点 type=“l”表示绘制点连成的折线 type=“b”表示有线连接的点 type=“o”表示将点绘在线上 t ...

  2. 浅谈Linux ftp服务器相关配置

    首先我们需要在Linux系统下安装FTP服务器  Ubuntu sudo apt-get install.......  centos yun....... 然后,我们要配置vsftpd.conf文件 ...

  3. 说说读卡应用那点事儿,以SCL010为例

    前一阵子的项目, 跟读卡应用有关,这篇博客算是我学习智能卡方面知识的而一个总结,也可以看作这个领域的一个很简单的简介,他写得很不书面,更像是沿着我自己认识过程的总结.所以这里面有很多我自己理解的地方, ...

  4. 英文:known good assembly(KGA) / 中文:确认好的组装件,已知好组装件

    英文:known good assembly(KGA) / 中文:确认好的组装件,已知好组装件 正确地操作印制板装配,并可作为标准件与其它同类型装配件比较的组装.也称黄金组装.

  5. 利用Mono.Cecil动态修改程序集来破解商业组件(仅用于研究学习)

    原文 利用Mono.Cecil动态修改程序集来破解商业组件(仅用于研究学习) Mono.Cecil是一个强大的MSIL的注入工具,利用它可以实现动态创建程序集,也可以实现拦截器横向切入动态方法,甚至还 ...

  6. mongodb 限制ip访问

    <pre name="code" class="python">一.限制访问IP和端口 MongoDB可以限制只允许某一特定IP来访问,只要在启动时 ...

  7. Oracle Licensing

    Oracle根据什么来计算License的? Unlimited License Agreements Unlimited License Agreements通常简称ULA,表示在一个固定期限内(2 ...

  8. 简单仿京东导航下拉菜单 javascript

    <html xmlns="http://www.w3.org/1999/xhtml"><head runat="server">    ...

  9. ThinkPHP - 连贯操作

    /** * 连贯操作 * @return 无返回值 */ public function coherentOperation(){ //实例化模型 $user = M('User'); // +--- ...

  10. 史上最详细的Android Studio系列教程一--下载和安装

    链接地址:http://segmentfault.com/a/1190000002401964#articleHeader4 原文链接:http://stormzhang.com/devtools/2 ...