为什么要分代

分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率。

在Java程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关,比如Http请求中的Session对象、线程、Socket连接,这类对象跟业务直接挂钩,因此生命周期比较长。但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,比如:String对象,由于其不变类的特性,系统会产生大量的这些对象,有些对象甚至只用一次即可回收。

试想,在不进行对象存活时间区分的情况下,每次垃圾回收都是对整个堆空间进行回收,花费时间相对会长,同时,因为每次回收都需要遍历所有存活对象,但实际上,对于生命周期长的对象而言,这种遍历是没有效果的,因为可能进行了很多次遍历,但是他们依旧存在。因此,分代垃圾回收采用分治的思想,进行代的划分,把不同生命周期的对象放在不同代上,不同代上采用最适合它的垃圾回收方式进行回收。

如何分代

如图所示:

虚拟机中的共划分为三个代:年轻代(Young Generation)、年老点(Old Generation)和持久代(Permanent Generation)。其中持久代主要存放的是Java类的类信息,与垃圾收集要收集的Java对象关系不大。年轻代和年老代的划分是对垃圾收集影响比较大的。

年轻代:

所有新生成的对象首先都是放在年轻代的。年轻代的目标就是尽可能快速的收集掉那些生命周期短的对象。年轻代分三个区。一个Eden区,两个Survivor区(一般而言)。大部分对象在Eden区中生成。当Eden区满时,还存活的对象将被复制到Survivor区(两个中的一个),当这个Survivor区满时,此区的存活对象将被复制到另外一个Survivor区,当这个Survivor去也满了的时候,从第一个Survivor区复制过来的并且此时还存活的对象,将被复制“年老区(Tenured)”。需要注意,Survivor的两个区是对称的,没先后关系,所以同一个区中可能同时存在从Eden复制过来 对象,和从前一个Survivor复制过来的对象,而复制到年老区的只有从第一个Survivor去过来的对象。而且,Survivor区总有一个是空的。同时,根据程序需要,Survivor区是可以配置为多个的(多于两个),这样可以增加对象在年轻代中的存在时间,减少被放到年老代的可能。

年老代:

在年轻代中经历了N次垃圾回收后仍然存活的对象,就会被放到年老代中。因此,可以认为年老代中存放的都是一些生命周期较长的对象。

持久代:

用于存放静态文件,如今Java类、方法等。持久代对垃圾回收没有显著影响,但是有些应用可能动态生成或者调用一些class,例如Hibernate等,在这种时候需要设置一个比较大的持久代空间来存放这些运行过程中新增的类。持久代大小通过-XX:MaxPermSize=<N>进行设置。

什么情况下触发垃圾回收

由于对象进行了分代处理,因此垃圾回收区域、时间也不一样。GC有两种类型:Scavenge GCFull GC

Scavenge GC

一般情况下,当新对象生成,并且在Eden申请空间失败时,就会触发Scavenge GC,对Eden区域进行GC,清除非存活对象,并且把尚且存活的对象移动到Survivor区。然后整理Survivor的两个区。这种方式的GC是对年轻代的Eden区进行,不会影响到年老代。因为大部分对象都是从Eden区开始的,同时Eden区不会分配的很大,所以Eden区的GC会频繁进行。因而,一般在这里需要使用速度快、效率高的算法,使Eden去能尽快空闲出来。

Full GC

对整个堆进行整理,包括Young、Tenured和Perm。Full GC因为需要对整个对进行回收,所以比Scavenge GC要慢,因此应该尽可能减少Full GC的次数。在对JVM调优的过程中,很大一部分工作就是对于FullGC的调节。有如下原因可能导致Full GC:

· 年老代(Tenured)被写满

· 持久代(Perm)被写满

· System.gc()被显示调用

·上一次GC之后Heap的各域分配策略动态变化

JVM调优总结(五)-分代垃圾回收详述1的更多相关文章

  1. JVM调优总结:分代垃圾回收详述

    为什么要分代 分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的.因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率. 在Java程序运行的过程中,会产生大量的对象, ...

  2. java虚拟机学习-JVM调优总结-分代垃圾回收详述(9)

    为什么要分代 分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的.因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率. 在Java程序运行的过程中,会产生大量的对象, ...

  3. JVM调优总结(三)——分代垃圾回收详述

    为什么要分代 分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的.因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率. 在Java程序运行的过程中,会产生大量的对象, ...

  4. JVM调优总结(四)-分代垃圾回收详述

    为什么要分代 分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的.因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率. 在Java程序运行的过程中,会产生大量的对象, ...

  5. JVM调优总结(六)-分代垃圾回收详述2

    分代垃圾回收流程示意 选择合适的垃圾收集算法 串行收集器 用单线程处理所有垃圾回收工作,因为无需多线程交互,所以效率比较高.但是,也无法使用多处理器的优势,所以此收集器适合单处理器机器.当然,此收集器 ...

  6. jvm详情——4、分代垃圾回收详述

    虚拟机中的共划分为三个代: 年轻代(Young Generation) 年老点(Old Generation) 持久代(Permanent Generation) 其中持久代主要存放的是Java类的类 ...

  7. JVM调优总结(四)-垃圾回收面临的问题

    如何区分垃圾 上面说到的“引用计数”法,通过统计控制生成对象和删除对象时的引用数来判断.垃圾回收程序收集计数为0的对象即可.但是这种方法无法解决循环引用.所以,后来实现的垃圾判断算法中,都是从程序运行 ...

  8. JVM调优总结(三)-垃圾回收面临的问题

    如何区分垃圾 上面说到的“引用计数”法,通过统计控制生成对象和删除对象时的引用数来判断.垃圾回收程序收集计数为0的对象即可.但是这种方法无法解决循环引用.所以,后来实现的垃圾判断算法中,都是从程序运行 ...

  9. JVM调优总结(4):分代垃圾回收

    为什么要分代 分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的.因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率. 在Java程序运行的过程中,会产生大量的对象, ...

随机推荐

  1. TC基础使用指南(基于xbeta的TC配置文件)

    所有常用目录都可以通过ctrl+d加一个或几个字母的超快捷方式直接跳转到位. 按下BackSpace键,就可以进入到上一级目录 Ctrl+q 在右侧打开左侧选定文件,再按一次Ctrl+q退出 按 Ct ...

  2. Python网络编程——处理套接字错误

    在网络应用中,经常会遇到这种情况:一方尝试连接,但另一方由于网络媒介失效或者其他原因无法响应. Python的Socket库提供了一个方法,能通过socket.error异常优雅地处理套接字错误. 1 ...

  3. Python网络编程——设定并获取默认的套接字超时时间

    Sometimes,you need to manipulate the default values of certain properties of a socket library, for e ...

  4. poj 1838

    http://poj.org/problem?id=1838 并查集,,,计算总共个数的模版..... #include <iostream> #define maxn 16006 #in ...

  5. 转:seajs的spm使用摸索

    ~~~spm是基于nodejs的,打开nodejs命令行工具,npm install spm -g 进行spm的安装,过程很漫长 github上的官网不能访问 seajs自带的spm打包工具相关文档略 ...

  6. 安装好maven后,在cmd中运行mvn报一下的错误

    当然报错,你这个路径下并没有pom.xml文件.你可以运行这个命令: mvn -version.

  7. Going Home(最大匹配km算法)

    Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20115   Accepted: 10189 Desc ...

  8. Jenkins Maven打包出错异常的解决方法

    Jenkins是一个很好用的打包部署工具,实现一键式部署项目,在项目处于测试阶段或者对于运维人员来讲是非常方便的一个工具. 但是最近使用Jenkins部署项目时老是出错,主要是maven打包的问题,错 ...

  9. win32多线程程序设计笔记(第四章下)

    上一笔记讲了同步机制中的临界区域(Critical Sections).互斥器(Mutexes),下面介绍同步机制中的另外两种. 信号量(Semaphores) 举个例子: 现在有人要租车,接待他的代 ...

  10. ZigBee研究之旅(二)

    在学习ZigBee设备CC2530模块时,编程后程序无法运行,但又十分确定程序的真确性的情况下,看看是不是project栏下的option选项配置的有问题,我是经常在这里出问题,一开始找不到原因,特此 ...