Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15942    Accepted Submission(s): 11245

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

 
Input
The
input contains several test cases. Each test case contains a positive
integer N(1<=N<=120) which is mentioned above. The input is
terminated by the end of file.
 
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 
Sample Input
4
10
20
 
Sample Output
5
42
627
 
Author
Ignatius.L
 
Recommend
We have carefully selected several similar problems for you:  1085 1398 2152 1709 1059
 
一开始自己想了一种解法,类似dp,但是应该不是dp,应该算找规律,速度没dp快,因为多了一层循环,虽然最里面一层循环很小,
#include<queue>
#include<math.h>
#include<stdio.h>
#include<string.h>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 130
int n,d[N][N];//d[i][j]表示组成不超过j的数组成i有多少种方法 int main()
{
for(int i=;i<=;i++)d[i][]=;
d[][]=;
for(int i=;i<=;i++)
{
for(int j=;j<=i;j++)
{
for(int k=j;k>=;k--)
{
d[i][j]+=d[i-k][min(i-k,k)];
}
}
}
while(~scanf("%d",&n))
{
cout<<d[n][n]<<endl;
}
return ;
}

看了网上的正规dp解法,稍加改进

#include<queue>
#include<math.h>
#include<stdio.h>
#include<string.h>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 130
int n,d[N][N]; int main()
{
for(int i=;i<=;i++)d[i][]=;
d[][]=;
for(int i=;i<=;i++)
{
for(int j=;j<=i;j++)
{
d[i][j]=d[i][j-]+d[i-j][min(j,i-j)];
}
}
while(~scanf("%d",&n))
{
cout<<d[n][n]<<endl;
}
return ;
}

还有一种母函数的做法

以后再学习

HDU 1028 Ignatius and the Princess III (母函数或者dp,找规律,)的更多相关文章

  1. hdu 1028 Ignatius and the Princess III 母函数

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  2. hdu 1028 Ignatius and the Princess III 简单dp

    题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...

  3. HDU 1028 Ignatius and the Princess III 整数的划分问题(打表或者记忆化搜索)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1028 Ignatius and the Princess III Time Limit: 2000/1 ...

  4. hdu 1028 Ignatius and the Princess III(DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. hdu 1028 Ignatius and the Princess III (n的划分)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1028 Ignatius and the Princess III (生成函数/母函数)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

  7. 题解报告:hdu 1028 Ignatius and the Princess III(母函数or计数DP)

    Problem Description "Well, it seems the first problem is too easy. I will let you know how fool ...

  8. HDU 1028 Ignatius and the Princess III (递归,dp)

    以下引用部分全都来自:http://blog.csdn.net/ice_crazy/article/details/7478802  Ice—Crazy的专栏 分析: HDU 1028 摘: 本题的意 ...

  9. HDU 1028 Ignatius and the Princess III (动态规划)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

随机推荐

  1. Android开发——Android的消息机制详解

    )子线程默认是没有Looper的,Handler创建前,必须手动创建,否则会报错.通过Looper.prepare()即可为当前线程创建一个Looper,并通过Looper.loop()来开启消息循环 ...

  2. Ubuntu 14.04 Unity 启动器加入最小化点击功能

    对于14.04之前的版本请勿尝试: 参开文章: http://askubuntu.com/questions/36433/can-i-use-the-unity-launcher-icon-to-mi ...

  3. python之动态参数 *args,**kwargs(聚合,打散)

    一.函数的动态参数 *args,**kwargs, 形参的顺序1.你的函数,为了拓展,对于传入的实参数量应该是不固定,所以就需要用到万能参数,动态参数,*args, **kwargs 1,*args  ...

  4. cookie小结(转)

    原文地址:http://www.cnblogs.com/xianyulaodi/p/6476991.html#_label0 作者:咸鱼老弟   阅读目录 什么是cookie       官方定义:N ...

  5. find_element——By 元素定位

    • find_element(By.ID,”loginName”)• find_element(By.NAME,”SubjectName”)• find_element(By.CLASS_NAME,” ...

  6. 学习笔记5——wp主题开发

    我觉得学习wordpress插件开发之前还是得先理解一下wp的主题开发,循序渐进才能学好wordpress开发,话不多说,接下来整理一下这两天学习的wordpress主题开发的一些心得和体会,与大家一 ...

  7. shit layui & bugs

    shit layui & bugs use is not useful at all! http://www.layui.com/demo/form.html layui.use([" ...

  8. bzoj 1818 Cqoi2010 内部白点 扫描线

    [Cqoi2010]内部白点 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1126  Solved: 530[Submit][Status][Disc ...

  9. 转:sudo 的常见用法和参数选项

    原文链接:http://wiki.ubuntu.org.cn/Sudo sudo,以其他用户身份执行一个命令. 用法 sudo -h | -K | -V sudo -v [-Akns] [-g gro ...

  10. spring security 登录、权限管理配置

    登录流程 1)容器启动(MySecurityMetadataSource:loadResourceDefine加载系统资源与权限列表)  2)用户发出请求  3)过滤器拦截(MySecurityFil ...