题目传送门

题目描述

对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。

如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。

现在给定一个数N,你能求出不超过N的最大的反质数么?(N<=2000000000)

$Sol$


首先我们需要知道一个数约数的个数。这个是算术基本定理的推论,这里就不再赘述了,这儿稍微提了一句。

之后因为N在2e9内,所以它至多有10个质因子。

再次,我们要满足质因子从小到大的数量单调不增。为什么呢?当一个质因子比较小时,它就有更强的可塑性去贡献更多的因子。譬如出名要趁早以及当一个选手比你小还比你强你就没办法了这样的意思。

于是我们就可以直接采用$dfs$来维护最大的反素数。最大的反素数一定是相同约数中最小的。因为约数相同时,但是当他更大时,就更有可能出现比他小,约数还比他多的反素数。

代码中几个参量分别是当前质数下标,现在累乘的结果,当前质数出现的次数,上一个质数出现的次数,以及现在总约数个数。注意,当一个素数被完全用尽(开始搜下一质数时),才累计它的个数。

$Code$

 #include<cstdio>
#include<algorithm> using namespace std;
typedef long long ll; ll n,ans,num;
ll prime[]={,,,,,,,,,,,,,}; void dfs(int pos,ll mul,ll nowcnt,ll lastcnt,ll allcnt)
{
if(ans==allcnt*(nowcnt+)&&mul<num)
num=mul;
if(allcnt*(nowcnt+)>ans)
ans=allcnt*(nowcnt+),num=mul;
if(nowcnt+<=lastcnt&&mul*prime[pos]<=n)
dfs(pos,mul*prime[pos],nowcnt+,lastcnt,allcnt);
for(int i=pos+;i<=;i++)
if(mul*prime[i]<=n)
dfs(i,mul*prime[i],,nowcnt,allcnt*(nowcnt+));
} int main()
{
scanf("%lld",&n);
dfs(,,,,);
printf("%lld\n",num);
return ;
}

$Others$


其实...本题还可以打表做。我们可以预先搞出所有的反素数,根据范围来得出答案。

但是...这个表最后我还是没完整地打出来(弱)。下面提供打部分表的思路。

 /*
---------------Sheet 1 --------------------
#include<cstdio>
#include<algorithm>
#define maxn 500000000 using namespace std; int ans=0;
short a[maxn];//技巧:用short省空间 int main()
{
freopen("1.out","w",stdout);
for(int i=1;i<=maxn-1;i++)
for(int j=i;j<=maxn;j+=i)
a[j]++; for(int i=1;i<=maxn;i++)
if(a[i]>ans)
{
ans=a[i];
printf("%d,",i);
}
printf("\n");
printf("%d",ans);
return 0;
}*/
/*
-----------Sheet 2---------------
#include<cstdio>
#include<algorithm>
#define maxn 1000000001
#define maxpre 500000000 using namespace std; int ans=1152;
short a[maxpre+1]; int main()
{
freopen("1.out","w",stdout);
for(int i=1;i<=maxn-1;i++)
for(int j=(maxpre/i)*i+i;j<=maxn-1;j+=i)
a[j-maxpre]++; for(int i=1;i<=maxpre;i++)
if(a[i]>ans)
{
ans=a[i];
printf("%d,",i+500000000);
}
printf("\n");
printf("%d",ans);
return 0;
}*/
/*-----------Sheet3-------------
#include<cstdio>
#include<algorithm>
#define maxn 1500000001
#define maxpre 1000000000 using namespace std; int ans=1344;
short a[(maxpre>>1)+1]; int main()
{
freopen("1.out","w",stdout);
for(int i=1;i<=maxn-1;i++)
for(int j=(maxpre/i)*i+i;j<=maxn-1;j+=i)
a[j-maxpre]++; for(int i=1;i<=maxpre;i++)
if(a[i]>ans)
{
ans=a[i];
printf("%d,",i+maxpre);
}
printf("\n");
printf("%d",ans);
return 0;
}*/

dabiao

Luogu P1463 [POI2002][HAOI2007]反素数【数论/dfs】By cellur925的更多相关文章

  1. 洛谷 P1463 [POI2002][HAOI2007]反素数

    题目链接 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1, ...

  2. [POI2002][HAOI2007]反素数 数论 搜索 好题

    题目描述: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4, ...

  3. 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)

    洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式  ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...

  4. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  5. [POI2002][HAOI2007]反素数

    题意 反素数 想法 证明这样一个结论 对于一个可行的反素数\(p\) \(p = \sum_{i}^{k} p_{k} ^ {c_k}\) 当 \(p_i > p_j 有 c_i < c_ ...

  6. 数学结论【p1463】[POI2002][HAOI2007]反素数

    Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...

  7. [POI2002][HAOI2007]反素数(Antiprime)

    题目链接 这道题需要用到整数唯一分解定理以及约数个数的计算公式.这里我就不再阐述了. 公式可以看出,只有指数影响约数个数,那么在唯一分解出的乘式中,指数放置的任何位置都是等价的.(即 23*34*57 ...

  8. 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)

    \([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...

  9. bzoj1053: [HAOI2007]反素数ant

    51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...

随机推荐

  1. ActiveMQ(一) 转

    package pfs.y2017.m11.mq.activemq.demo01; import javax.jms.Connection; import javax.jms.DeliveryMode ...

  2. 处理页面载入图片js(等比例压缩图片)

    第一页面html  <div class="admin">${answer.content}</div> <div class="admin ...

  3. python day - 17 面向对象的 类空间 和 组合

    1. 类命名空间 在类的代码中,当python 解释器在 运行的那一刻.就会在内存中开辟一个类空间,在类的空间中会加载静态变量,以及类方法的内存地址. 当类名+()(也就是实例化过程中),内存中会再次 ...

  4. JSP复习笔记

    1.注释 <!--这个注释会显示在HTML源码中--> <%--隐藏注释,不会显示在HTML源码中--%> 2.声明 <%! java声明 声明变量,方法等 %> ...

  5. jvm 命令

    jps  jps主要用来输出JVM中运行的进程状态信息.语法格式如下: jps [options] [hostid] 如果不指定hostid就默认为当前主机或服务器. -q 不输出类名.Jar名和传入 ...

  6. 微软下一代站点开发框架:ASP.NET MVC 6 新特性揭秘

     国内第一个<微软下一代站点开发框架:ASP.NET MVC 6 新特性揭秘 >课程 微软特邀讲师 徐雷!周六晚8点YY预定:id=28447" href="htt ...

  7. phpexcel导出后乱码或者是打不开文件必须修复的问题

    百度了一下找到了解决办法,只要在header前面加上ob_end_clean();这句代码,清除缓冲区,这样就可以了,完美的解决了我的问题

  8. delphi三层架构(使用SATRDA改造,客户端代码不变)

    我们的delphi程序很多是以前开发的,采用典型的CS架构,由程序直接连接数据库.现在需要改成在外网可以直接操作软件.先把数据库搬到了阿里云上,测试发现直接连数据库和VPN连接测试速度很慢,直连还容易 ...

  9. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  10. LoadRunner使用动态链接库技术

    什么是动态库? 动态库一般又叫动态链接库英文为DLL,是Dynamic Link Library 的缩写形式,DLL是一个包含可由多个程序同时使用的代码和数据的库,DLL不是可执行文件.动态链接提供了 ...