Leetcode 218.天际线问题
天际线问题
城市的天际线是从远处观看该城市中所有建筑物形成的轮廓的外部轮廓。现在,假设您获得了城市风光照片(图A)上显示的所有建筑物的位置和高度,请编写一个程序以输出由这些建筑物形成的天际线(图B)。
每个建筑物的几何信息用三元组 [Li,Ri,Hi] 表示,其中 Li 和 Ri 分别是第 i 座建筑物左右边缘的 x 坐标,Hi 是其高度。可以保证 0 ≤ Li, Ri ≤ INT_MAX, 0 < Hi ≤ INT_MAX 和 Ri - Li > 0。您可以假设所有建筑物都是在绝对平坦且高度为 0 的表面上的完美矩形。
例如,图A中所有建筑物的尺寸记录为:[ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ] 。
输出是以 [ [x1,y1], [x2, y2], [x3, y3], ... ] 格式的"关键点"(图B中的红点)的列表,它们唯一地定义了天际线。关键点是水平线段的左端点。请注意,最右侧建筑物的最后一个关键点仅用于标记天际线的终点,并始终为零高度。此外,任何两个相邻建筑物之间的地面都应被视为天际线轮廓的一部分。
例如,图B中的天际线应该表示为:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ]。
说明:
- 任何输入列表中的建筑物数量保证在 [0, 10000] 范围内。
- 输入列表已经按升序排列在左边的 x 位置 Li 。
- 输出列表必须按 x 位排序。
- 输出天际线中不得有连续的相同高度的水平线。例如 [...[2 3], [4 5], [7 5], [11 5], [12 7]...] 是不正确的答案;三条高度为 5 的线应该在最终输出中合并为一个:[...[2 3], [4 5], [12 7], ...]
思路
如果按照一个矩形一个矩形来处理将会非常麻烦,我们可以把这些矩形拆成两个点,一个左上顶点,一个右上顶点。将所有顶点按照横坐标排序后,我们开始遍历这些点。遍历时,通过一个堆来得知当前图形的最高位置。堆顶是所有顶点中最高的点,只要这个点没被移出堆,说明这个最高的矩形还没结束。对于左顶点,我们将其加入堆中。对于右顶点,我们找出堆中其相应的左顶点,然后移出这个左顶点,同时也意味这这个矩形的结束。具体代码中,为了在排序后的顶点列表中区分左右顶点,左顶点的值是正数,而右顶点值则存的是负数。
注意
- 堆中先加入一个零点高度,帮助我们在只有最矮的建筑物时选择最低值
复杂度
时间 O(NlogN) 空间 O(N)
public class Solution {
public List<int[]> getSkyline(int[][] buildings) {
List<int[]> result = new ArrayList<>();
List<int[]> height = new ArrayList<>();
// 拆解矩形,构建顶点的列表
for(int[] b:buildings) {
// 左顶点存为负数
height.add(new int[]{b[0], -b[2]});
// 右顶点存为正数
height.add(new int[]{b[1], b[2]});
}
// 根据横坐标对列表排序,相同横坐标的点纵坐标小的排在前面
Collections.sort(height, new Comparator<int[]>(){
public int compare(int[] a, int[] b){
if(a[0] != b[0]){
return a[0] - b[0];
} else {
return a[1] - b[1];
}
}
});
// 构建堆,按照纵坐标来判断大小
Queue<Integer> pq = new PriorityQueue<Integer>(11, new Comparator<Integer>(){
public int compare(Integer i1, Integer i2){
return i2 - i1;
}
});
// 将地平线值9先加入堆中
pq.offer(0);
// prev用于记录上次keypoint的高度
int prev = 0;
for(int[] h:height) {
// 将左顶点加入堆中
if(h[1] < 0) {
pq.offer(-h[1]);
} else {
// 将右顶点对应的左顶点移去
pq.remove(h[1]);
}
int cur = pq.peek();
// 如果堆的新顶部和上个keypoint高度不一样,则加入一个新的keypoint
if(prev != cur) {
result.add(new int[]{h[0], cur});
prev = cur;
}
}
return result;
}
}
Leetcode 218.天际线问题的更多相关文章
- Java实现 LeetCode 218 天际线问题
218. 天际线问题 城市的天际线是从远处观看该城市中所有建筑物形成的轮廓的外部轮廓.现在,假设您获得了城市风光照片(图A)上显示的所有建筑物的位置和高度,请编写一个程序以输出由这些建筑物形成的天际线 ...
- [LeetCode] 218. The Skyline Problem 天际线问题
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- LeetCode 218. The Skyline Problem 天际线问题(C++/Java)
题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...
- Java for LeetCode 218 The Skyline Problem【HARD】
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...
- [LeetCode#218] The Skyline Problem
Problem: A city's skyline is the outer contour of the silhouette formed by all the buildings in that ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- C#LeetCode刷题-分治算法
分治算法篇 # 题名 刷题 通过率 难度 4 两个排序数组的中位数 C#LeetCode刷题之#4-两个排序数组的中位数(Median of Two Sorted Arrays)-该题未达最优解 30 ...
- leetcode难题
4 寻找两个有序数组的中位数 35.9% 困难 10 正则表达式匹配 24.6% 困难 23 合并K个排序链表 47.4% 困难 25 K ...
- C#LeetCode刷题-线段树
线段树篇 # 题名 刷题 通过率 难度 218 天际线问题 32.7% 困难 307 区域和检索 - 数组可修改 42.3% 中等 315 计算右侧小于当前元素的个数 31.9% 困难 4 ...
随机推荐
- 博弈 HDOJ 4371 Alice and Bob
题目传送门 题意:Alice和 Bob轮流写数字,假设第 i 次的数字是S[i] ,那么第 i+1 次的数字 S[i+1] = S[i] + d[k] 或 S[i] - d[k],条件是 S[i+1] ...
- BFS(最短路) HDOJ 4308 Saving Princess claire_
题目传送门 题意:一个(r*c<=5000)的迷宫,起点'Y‘,终点'C',陷阱‘#’,可行路‘*’(每走一个,*cost),传送门P,问Y到C的最短路 分析:一道最短路问题,加了传送门的功能, ...
- JavaScript的执行
下面内容参考:http://blog.csdn.net/cxiaokai/article/details/7552653 http://www.jb51.net/article/36755.htm 首 ...
- 框架系列~OwinSelfHost自宿主的使用
在进入mvc5之后,OWIN变更很主推,很热,关于OWIN的文章也就出来了,下面阅读了dudu和一些园友的文章,自己也做了一个SelfHost的程序,测试了一下,感觉还是比较有Core的风格,可能也是 ...
- Echarts生成饼状图、条形图以及线形图 JS封装
1.在我们开发程序中,经常会用到生成一些报表,比方说饼状图,条形图,折线图等.不多说了,直接上封装好的代码,如下Echarts.js所示 以下代码是封装在Echarts.js文件中 /** * Cre ...
- greendao3.2.3配置时遇到的问题
这两天我一直在研究greendao这个框架,我在GitHub下载了 greendao3.2.2:https://github.com/greenrobot/greenDAO,照着网址里面来配置: // ...
- webpack2版本四个核心概念
webpack 是一个现代的 JavaScript 应用程序的模块打包器(module bundler) 四个核心概念: --------------------------------------- ...
- swift 与 NSObject
以NSObject为基类,只是为了提供Objective-C API的使用入口: 经由@object修改的对象,是这些api的参量. NSObject是swift与oc特有机制沟通的桥梁. Subcl ...
- Linux——网络编程线程池机制
#include <stdlib.h>#include <pthread.h>#include <unistd.h>#include <assert.h> ...
- scws分词配置
1.下载安装包 wget -q -O - http://www.xunsearch.com/scws/down/scws-1.2.3.tar.bz2 | tar xjf - 2.进入源码目录配置和编译 ...