【loj6191】「美团 CodeM 复赛」配对游戏
显然期望dp。
简单想法:
f[i][j]表示前i个人中向右看并且没有被消除的人数的概率
如果第i+1个人是向右,$f[i+1][j+1]=f[i][j]/2$
如果第i+1个人是向左,$f[i+1][j-1]=f[i][j]/2$
最后期望总和是$\sum_{i=0}^{n} i*f[n][i]$
转移没有问题,但容易发现这样算出来的期望剩余人数没有算上向左看的。
什么意思呢?我们都知道期望=数量(人数)*概率,但这里dp只设了向右看的人数状态,虽然也包括了所有向左看的情况,但最后算期望的时候,每种向右看的人数情况的概率所乘的人数 只有向右看的而没有向左看的,这样就忽略了最终剩下的向左看的人数对期望的影响。
比如当j=0,也就是向右看的人数为0时,期望=向右看人数*概率=0*概率=0,但很明显这种情况下向左看的人数还有很多种情况,它们的人数并没有被算上。
但稍微一观察就会发现,向右看和向左看的情况好像是一样的,因此最终期望就等于之前算出的期望总和*2。
这又是什么意思?要把向左看的人算上,还得设个g[i][j]表示前i个人中向左看并且没有被消除的人数的概率,然后转移和期望求和方法与向右看的相同,只是这样的话期望剩余人数就只算上了向左看的而没算上向右看的。
那么期望和就是$\sum_{i=0}^{n} i*(f[n][i]+g[n][i])$
也就是说要证明f[n][i]=g[n][i],才能证明向右看的答案*2是正确的。
我们知道,最后剩下的人一定是前一段向左看,后一段向右看,比如<<<>>>>。中间被消掉的一定都是有相对关系的。
那把剩下的人的序列完全对称,得到这个对称序列的概率和对称前是相等的。
就上面那个例子,对称后就得到了<<<<>>>,与原序列<<<>>>>的出现概率相等,只是把向右看的都改为放向左看的,反之亦然而已。数学化地讲:两序列dp形式分别是$f[n][4]$和$g[n][4]$,而两个式子的转移方法相同,所以是等价的。
而每种向右看的情况都对应一种向左看的情况(只要对称就得到了这样一种合法情况),前者向右看的人数和后者向左看的人数相等,即$f[n][i]=g[n][i] | 0\leq i \leq n$。得证。
所以答案为$(\sum_{i=0}^{n} i*f[n][i])*2$
如果没发现对称性,可以直接设期望,比如这篇博客。也可以自行百度其他 dp设期望 的方式。
代码过短不放了
【loj6191】「美团 CodeM 复赛」配对游戏的更多相关文章
- LibreOJ #6191. 「美团 CodeM 复赛」配对游戏
二次联通门 : LibreOJ #6191. 「美团 CodeM 复赛」配对游戏 /* LibreOJ #6191. 「美团 CodeM 复赛」配对游戏 概率dp */ #include <cs ...
- 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp
题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...
- loj #6191. 「美团 CodeM 复赛」配对游戏 期望dp
题意:有一个栈,随机插入 $n$ 次 $0$/$1$ 如果栈顶是 $1$,然后插入 $0$,则将这两个元素都弹出,否则,插入栈顶. 求:$n$ 次操作后栈中期望的元素个数. 我们发现,按照上述弹栈方式 ...
- LOJ #6192. 「美团 CodeM 复赛」城市网络 (树上倍增)
#6192. 「美团 CodeM 复赛」城市网络 内存限制:64 MiB 时间限制:500 ms 标准输入输出 题目描述 有一个树状的城市网络(即 nnn 个城市由 n−1n-1n−1 条道路连接 ...
- LibreOJ #6192. 「美团 CodeM 复赛」城市网络
#6192. 「美团 CodeM 复赛」城市网络 内存限制:64 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: sqc 提交提交记录统计讨论测试数据 题目描 ...
- 「美团 CodeM 复赛」城市网络
题目链接 题意分析 首先 \([u,v]\)在树上是一条深度递增的链 那么我们可以使用倍增找 \(x\)的祖先当中深度最大的值大于\(x\)的点 然后维护一个\(pre\) 重新建树 这样从\(x\) ...
- 美团 CodeM 复赛」城市网络
美团 CodeM 复赛」城市网络 内存限制:64 MiB时间限制:500 ms标准输入输出 题目描述 有一个树状的城市网络(即 nnn 个城市由 n−1n-1n−1 条道路连接的连通图),首都为 11 ...
- [LOJ 6213]「美团 CodeM 决赛」radar
[LOJ 6213]「美团 CodeM 决赛」radar 题意 给定 \(n\) 个横坐标 \(x_i\) , 为它们选择一个不超过 \(y_i\) 的纵坐标 \(h_i\), 产生 \(c_ih_i ...
- LibreOJ #6212. 「美团 CodeM 决赛」melon
二次联通门 : LibreOJ #6212. 「美团 CodeM 决赛」melon /* LibreOJ #6212. 「美团 CodeM 决赛」melon MDZZ 这是决赛题?? */ #incl ...
随机推荐
- 分享一个WebGL开发的网站-用JavaScript + WebGL开发3D模型
这张图每位程序员应该都深有感触. 人民心目中的程序员是这样的:坐在电脑面前噼里啪啦敲着键盘,运键如飞. 现实中程序员是这样的:编码5分钟,调试两小时. 今天我要给大家分享一个用WebGL开发的网站,感 ...
- java并发编程:Executor、Executors、ExecutorService
1.Executor和ExecutorService Executor:一个接口,其定义了一个接收Runnable对象的方法executor,其方法签名为executor(Runnable comma ...
- chrom浏览器-F12使用方法二
文摘摘自:https://blog.csdn.net/run65536/article/details/80568543 提示:右键点击图片选择在新窗口或新标签页中打开可查看大图. 一.Element ...
- DaemonSet 案例分析
本节详细分析两个 k8s 自己的 DaemonSet:kube-flannel-ds 和 kube-proxy . kube-flannel-ds 下面我们通过分析 kube-flannel-ds 来 ...
- CAD控件的超链接事件(网页版)
_DMxDrawXEvents::HyperlinkClick 有超连接的实体被点击了. 参数 说明 IDispatch* pEntity IMxDrawEntity,被点击的实体 DOUBLE dX ...
- python_112_网络编程 Socket编程
实例1:客户端发小写英文,服务器端返回给客户端大写英文(仅支持一次接受发送) 服务器端: #服务器端(先于客户端运行) import socket server=socket.socket() ser ...
- QT +自定义控件-spin+slider
动手实现自定义控件: 1.首先在ui界面中添加一个(Widget)容器类.如图中的1所示 2.在项目中添加一个SmallWidget类,如下: 3.接着在程序编辑界面进行程序编辑如下: #includ ...
- (1)JSTL的13个core标签库
标准标签库JSTL的全名为:Java Server Pages Standard Tag Library. (jsp standard tag library) JSTL主要提供了5大类标签库: ...
- MongoDB在java中的使用
在一年前就开始在项目中使用Mongodb作为爬虫(crawler)待下载URL.下载成功URL等的存储库,最近对项目进行版本更新,根据Mongodb的最近升级情况,也对项目中的Mongodb进行了相关 ...
- javaEE(5)_Cookie和Session
一.会话 1.什么是会话?会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话.类似打电话一样.2.会话过程中要解决的一些问题?每个用户 ...