费用流(bzoj 3130)
Description
Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识。
最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量。一个合法的网络流方案必须满足:(1)每条边的实际流量都不超过其最大流量且非负;(2)除了源点S和汇点T之外,对于其余所有点,都满足该点总流入流量等于该点总流出流量;而S点的净流出流量等于T点的净流入流量,这个值也即该网络流方案的总运输量。最大流问题就是对于给定的运输网络,求总运输量最大的网络流方案。
上图表示了一个最大流问题。对于每条边,右边的数代表该边的最大流量,左边的数代表在最优解中,该边的实际流量。需要注意到,一个最大流问题的解可能不是唯一的。 对于一张给定的运输网络,Alice先确定一个最大流,如果有多种解,Alice可以任选一种;之后Bob在每条边上分配单位花费(单位花费必须是非负实数),要求所有边的单位花费之和等于P。总费用等于每一条边的实际流量乘以该边的单位花费。需要注意到,Bob在分配单位花费之前,已经知道Alice所给出的最大流方案。现茌Alice希望总费用尽量小,而Bob希望总费用尽量大。我们想知道,如果两个人都执行最优策略,最大流的值和总费用分别为多少。
Input
第一行三个整数N,M,P。N表示给定运输网络中节点的数量,M表示有向边的数量,P的含义见问题描述部分。为了简化问题,我们假设源点S是点1,汇点T是点N。
接下来M行,每行三个整数A,B,C,表示有一条从点A到点B的有向边,其最大流量是C。
Output
第一行一个整数,表示最大流的值。
第二行一个实数,表示总费用。建议选手输出四位以上小数。
Sample Input
1 2 10
2 3 15
Sample Output
10.0000
HINT
【样例说明】
对于Alice,最大流的方案是固定的。两条边的实际流量都为10。
对于Bob,给第一条边分配0.5的费用,第二条边分配0.5的费用。总费用
为:10*0.5+10*0.5=10。可以证明不存在总费用更大的分配方案。
【数据规模和约定】
对于20%的测试数据:所有有向边的最大流量都是1。
对于100%的测试数据:N < = 100,M < = 1000。
对于l00%的测试数据:所有点的编号在I..N范围内。1 < = 每条边的最大流
量 < = 50000。1 < = P < = 10。给定运输网络中不会有起点和终点相同的边。
/*
可以知道,最后P一定分配在最大的容量的那条边,那么就要使最大容量最小,二分答案。
*/
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<cmath>
#define inf 1000000000
#define N 2010
#define eps 0.0001
using namespace std;
int head[N],dis[N],n,m,p,cnt=,S,T;int q[N];
struct node{int v,pre;double f;}e[N*];
struct Node{int u,v,w;}road[N*]; void add(int u,int v,double f){
e[++cnt].v=v;e[cnt].f=f;e[cnt].pre=head[u];head[u]=cnt;
e[++cnt].v=u;e[cnt].f=;e[cnt].pre=head[v];head[v]=cnt;
}
bool bfs(){
memset(dis,-,sizeof(dis));
queue<int>q;q.push(S);dis[S]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=e[i].pre)
if(e[i].f>&&dis[e[i].v]==-){
dis[e[i].v]=dis[u]+;
q.push(e[i].v);
if(e[i].v==T) return true;
}
}
return dis[T]!=-;
}
double dinic(int x,double f){
if(x==T)return f;
double rest=f;
for(int i=head[x];i;i=e[i].pre){
if(e[i].f&&dis[e[i].v]==dis[x]+){
double t=dinic(e[i].v,min(rest,e[i].f));
if(!t) dis[e[i].v]=-;
e[i].f-=t;
e[i^].f+=t;
rest-=t;
}
}
return f-rest;
}
double work(double mid){
memset(head,,sizeof(head));
cnt=;double maxflow=;
for(int i=;i<=m;i++)
add(road[i].u,road[i].v,min((double)road[i].w,mid));
while(bfs())
maxflow+=dinic(S,inf);
return maxflow;
}
int main(){
scanf("%d%d%d",&n,&m,&p);
S=;T=n;double maxf=;
for(int i=;i<=m;i++){
scanf("%d%d%d",&road[i].u,&road[i].v,&road[i].w);
maxf=max(maxf,(double)road[i].w);
}
double maxflow=work(maxf);
printf("%d\n",(int)maxflow);
double l=,r=maxf,ans=r;
while(r-l>eps){
double mid=(l+r)/2.0;
if(fabs(work(mid)-maxflow)<eps)
r=mid,ans=mid;
else l=mid;
}
printf("%.4lf",ans*(double)p);
return ;
}
费用流(bzoj 3130)的更多相关文章
- [SCOI2007]修车 费用流 BZOJ 1070
题目描述 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待 ...
- BZOJ 3130: [Sdoi2013]费用流 网络流 二分 最大流
https://www.lydsy.com/JudgeOnline/problem.php?id=3130 本来找费用流的题,权当复习一下网络流好了. 有点麻烦的是double,干脆判断大小或者二分增 ...
- BZOJ 3130: [Sdoi2013]费用流 网络流+二分
3130: [Sdoi2013]费用流 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1230 Solved: ...
- [BZOJ 1221] [HNOI2001] 软件开发 【费用流 || 三分】
题目链接:BZOJ - 1221 题目分析 算法一:最小费用最大流 首先这是一道经典的网络流问题.每天建立两个节点,一个 i 表示使用毛巾,一个 i' 表示这天用过的毛巾. 然后 i 向 T 连 Ai ...
- BZOJ.4842.[NEERC2016]Delight for a Cat(费用流)
BZOJ 参考这儿. 首先如果一个活动的时间满足条件,那么另一个活动也一定满足.还有就是这题就是费用流没有为什么.不妨假设最初所有时间都用来睡觉,那么我们要对每个\(k\)大小区间选出\([t2,k- ...
- bzoj 3597 [Scoi2014] 方伯伯运椰子 - 费用流 - 二分答案
题目传送门 传送门 题目大意 给定一个费用流,每条边有一个初始流量$c_i$和单位流量费用$d_i$,增加一条边的1单位的流量需要花费$b_i$的代价而减少一条边的1单位的流量需要花费$a_i$的代价 ...
- BZOJ.2597.[WC2007]剪刀石头布(费用流zkw)
BZOJ 洛谷 \(Description\) 给定一张部分边方向已确定的竞赛图.你需要给剩下的边确定方向,使得图中的三元环数量最多. \(n\leq100\). \(Solution\) 这种选择之 ...
- BZOJ 3876 支线剧情 | 有下界费用流
BZOJ 3876 支线剧情 | 有下界费用流 题意 这题题面搞得我看了半天没看懂--是这样的,原题中的"剧情"指的是边,"剧情点"指的才是点. 题面翻译过来大 ...
- BZOJ.4819.[SDOI2017]新生舞会(01分数规划 费用流SPFA)
BZOJ 洛谷 裸01分数规划.二分之后就是裸最大费用最大流了. 写的朴素SPFA费用流,洛谷跑的非常快啊,为什么有人还T成那样.. 当然用二分也很慢,用什么什么迭代会很快. [Update] 19. ...
- BZOJ.4514.[SDOI2016]数字配对(费用流SPFA 二分图)
BZOJ 洛谷 \(Solution\) 很显然的建二分图后跑最大费用流,但有个问题是一个数是只能用一次的,这样二分图两部分都有这个数. 那么就用两倍的.如果\(i\)可以向\(j'\)连边,\(j\ ...
随机推荐
- Java-NestedClass(Interface).
内部类(Nested Class) 内部类:即在一个类中还包含着另外一个类,一般是作为匿名类或者是使用数据隐藏时使用的.例子: //内部类 class Out{ private int age = 1 ...
- (四)VMware Harbor 配置文件
VMware Harbor 配置文件 :harbor.yml # Configuration file of Harbor # The IP address or hostname to access ...
- C#背景图片自适应
1.选中窗体修改属性 2.在load添加代码 private void Form1_Load(object sender, EventArgs e) { this.BackgroundImageLay ...
- OpenCV2:第八章 界面事件
一.简介 OpenCV中提供了程序界面中的鼠标和键盘事件 二.鼠标事件 // 设置鼠标回调函数 void setMouseCallback ( const string& winname, ...
- javascript中typeof、undefined 和 null
typeof 是运算符,注意不是函数,是运算符,其作用,是考察变量究竟是什么类型.或曰,是变量是否定义或是否初始化的照妖镜.返回值是字符串. undefined 表示一个对象没有被定义或者没有被初始化 ...
- Bootstrap历练实例:验证状态
验证状态 Bootstrap 包含了错误.警告和成功消息的验证样式.只需要对父元素简单地添加适当的 class(.has-warning. .has-error 或 .has-success)即可使用 ...
- Spring 概念及特点 Spring下载地址 控制反转IoC实现原理
Spring下载地址 http://repo.springsource.org/libs-release-local/org/springframework/spring/ Spring是开源full ...
- WYS APP
UI图:http://modao.io/app/H8eZCQdV1pskjQ7z8bLh 四个tab:我要赛.赛事.运动吧.个人中心 赛事页面 1.主要是个NavigationController 2 ...
- [LUOGU] P2196 挖地雷
题目背景 NOIp1996提高组第三题 题目描述 在一个地图上有N个地窖(N<=20),每个地窖中埋有一定数量的地雷.同时,给出地窖之间的连接路径.当地窖及其连接的数据给出之后,某人可以从任一处 ...
- Linux基础学习-Docker学习笔记
Docker安装 1 官方网站访问速度很慢,帮助文档 2 国内中文网站,帮助文档 [root@qdlinux ~]# yum remove docker \ docker-client \ docke ...