BZOJ 1443 [JSOI2009]游戏Game ——博弈论
好题。
首先看到棋盘,先黑白染色。
然后就是二分图的经典模型。
考虑最特殊的情况,完美匹配,那么先手必胜,
因为无论如何,先手走匹配边,后手无论走哪条边,总有对应的匹配边。
如果在不在最大匹配中出发,先手无论如何会走到最大匹配中,然后后手顺着匹配走,一定能胜利。
(万一又走到非最大匹配中呢,显然这样我们会找到一条增广路,与最大匹配不符)。
但是最大匹配不止又一种,所以我们需要判断是否在最大匹配中,需要寻找交错路。
如果在最大匹配中出发,显然先手必胜,(如果走到非最大匹配的点上,那么就相当于找到一条交错路可以替换,反而让非最大匹配换到了最大匹配中)
然后就相当于求一定不在最大匹配中的点了。
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i) int mov[4][2]={{0,1},{1,0},{-1,0},{0,-1}};
vector <int> v[10005];
int id[105][105],a[105][105],n,m,cnt,vis[10005],linker[10005];
char s[105];
int ans[10005][2],tot=0,g[10005][10]; int dfs(int x)
{
for (int i=1;i<=g[x][0];++i)
{
int t=g[x][i];
if (vis[t]) continue;
vis[t]=1;
if (!linker[t]||dfs(linker[t]))
{
linker[t]=x;
linker[x]=t;
return 1;
}
}
return 0;
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
F(i,1,n) F(j,1,m) id[i][j]=++cnt;
F(i,1,n)
{
scanf("%s",s+1);
F(j,1,m)
if (s[j]=='#') a[i][j]=1;
}
F(i,1,n) F(j,1,m)
if (!a[i][j]&&((i+j)%2)){
int tx,ty;
F(k,0,3)
{
tx=i+mov[k][0];ty=j+mov[k][1];
if (tx>=1&&tx<=n&&ty>=1&&ty<=m&&!a[tx][ty])
{
g[id[i][j]][++g[id[i][j]][0]]=id[tx][ty];
g[id[tx][ty]][++g[id[tx][ty]][0]]=id[i][j];
}
}
}
int cnt=0;
F(i,1,n) F(j,1,m) if (!a[i][j]&&(i+j)%2)
{
memset(vis,0,sizeof vis);
if (dfs(id[i][j])) cnt++;
}
F(i,1,n) F(j,1,m) if (!a[i][j])
{
memset(vis,0,sizeof vis);
vis[id[i][j]]=1;
if (!linker[id[i][j]]||dfs(linker[id[i][j]]))
{
tot++;
ans[tot][0]=i;ans[tot][1]=j;
linker[id[i][j]]=0;
}
}
if (!tot) printf("LOSE\n");
else
{
printf("WIN\n");
F(i,1,tot) printf("%d %d\n",ans[i][0],ans[i][1]);
}
}
BZOJ 1443 [JSOI2009]游戏Game ——博弈论的更多相关文章
- BZOJ:1443: [JSOI2009]游戏Game
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1443 反正不看题解我是完全想不出系列…… 先把棋盘黑白染色,也就是同一对角线上颜色相同,使 ...
- BZOJ.1443.[JSOI2009]游戏Game(二分图博弈 匈牙利)
题目链接 \(Description\) 一个\(N*M\)的有障碍的棋盘,先手放置棋子后,从后手开始轮流移动棋子,不能走重复的位置,不能移动的输.求在哪些位置放棋子是先手必胜的. \(Solutio ...
- 【BZOJ】1443: [JSOI2009]游戏Game
[算法]博弈论+二分图匹配(最大流) [题解]方格图黑白染色得到二分图, 二分图博弈:当起点不属于某个最大匹配时,后手必胜. 问题转化为那些点不属于某个最大匹配. 先找到一个最大匹配,非匹配点加入答案 ...
- BZOJ:[JSOI2009]游戏Game【二分图匹配乱搞】
题目大意:n*m的棋盘,其中有些区域是禁区,两个人在棋盘上进行博弈,后手选择棋子的初始位置,然后先后手轮流将棋子往上下左右移动,走过的区域不能再走,问能否有一个位置使得后手必胜 Input 输入数据首 ...
- BZOJ1443: [JSOI2009]游戏Game
如果没有不能走的格子的话,和BZOJ2463一样,直接判断是否能二分图匹配 现在有了一些不能走的格子 黑白染色后求出最大匹配 如果是完备匹配,则无论如何后手都能转移到1*2的另一端,故先手必输 否则的 ...
- JSOI2009 游戏
1443: [JSOI2009]游戏Game Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 557 Solved: 251[Submit][Stat ...
- BZOJ 1444:[JSOI2009]有趣的游戏
BZOJ 1444:[JSOI2009]有趣的游戏 题目链接 首先我们建出Trie图,然后高斯消元. 我们设\(f_i\)表示经过第\(i\)个点的期望次数: \[ f_x=\sum i\cdot p ...
- 【BZOJ1022】小约翰的游戏(博弈论)
[BZOJ1022]小约翰的游戏(博弈论) 题面 BZOJ 题解 \(Anti-SG\)游戏的模板题目. #include<iostream> #include<cstdio> ...
- 【BZOJ1188】分裂游戏(博弈论)
[BZOJ1188]分裂游戏(博弈论) 题面 BZOJ 洛谷 题解 这道题目比较神仙. 首先观察结束状态,即\(P\)状态,此时必定是所有的豆子都在最后一个瓶子中. 发现每次的转移一定是拿出一棵豆子, ...
随机推荐
- ThreadLocal应用场景以及源码分析
一.应用篇 ThreadLocal介绍 ThreadLocal如果单纯从字面上理解的话好像是“本地线程”的意思,其实并不是这个意思,只是这个名字起的太容易让人误解了,它的真正的意思是线程本地变量. 实 ...
- shiro : java.lang.IllegalArgumentException: Odd number of characters.
shiro使用的时候: java.lang.IllegalArgumentException: Odd number of characters. at org.apache.shiro.cod ...
- ubuntu 14.04安装 nginx直播服务平台
在官网上下载nginx,可以选中直接从ubuntu的源红直接安装:sudo apt-get install nginx.还有就是源码编译安装,我选择的是源码编译安装.具体的步骤如下: ll /usr/ ...
- 理解Vue
Vue.js是JavaScript MVVM(Model-View-ViewModel)库,十分简洁,Vue核心只关注视图层,相对AngularJS提供更加简洁.易于理解的API.Vue尽可能通过简单 ...
- VM虚拟机下的Linux不能上网
虚拟机linux上网配置 图解教程 首先查看window7主机下的网络配置VMNet1或VMNet8是否开启,其实linux系统的网络连接跟linux系统一致 在虚拟机界面将桥接改为NAT连接 点虚拟 ...
- noj-1102-黑白图像
1 //题目地址:http://acm.njupt.edu.cn/acmhome/problemdetail.do?method=showdetail&id=1102 ...
- 关于jQuery中的$发生冲突及解决方案
问题描述: 在Jquery库中,$是JQuery的别名,所有使用$的地方也都可以使用JQuery来替换,如$('#msg')等同于JQuery('#msg')的写法. 当引入多个js库后,其它的js库 ...
- ext笔记
命名 The top-level namespaces and the actual class names should be CamelCased. Everything else shoul ...
- 实体类和JSON对象之间相互转化
. [代码]工具类 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 3 ...
- NOIP 2018数据点
链接: https://pan.baidu.com/s/14jXQGPSac3b9_m5h5x2wGQ 提取码: 1cbk 好文别忘点赞!!!